This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349227 #12 Aug 29 2024 17:13:49 %S A349227 1,1,1,2,2,2,3,1,1,5,2,2,4,3,3,1,5,5,2,3,3,3,5,4,2,4,6,3,3,7,1,1,11,2, %T A349227 2,7,1,5,11,2,3,7,4,2,8,5,3,5,6,5,6,7,3,5,9,5,6,8,2,7,5,4,5,8,5,7,5,7, %U A349227 9,3,3,11,1,7,7,2,11,4,3,9,6,4,6,7,6,7 %N A349227 Lexicographically earliest sequence of positive integers such that the products of three consecutive terms are all distinct. %C A349227 This sequence has similarities with A088177; here we consider products of three consecutive terms, there products of two consecutive terms. %H A349227 Rémy Sigrist, <a href="/A349227/b349227.txt">Table of n, a(n) for n = 1..10000</a> %e A349227 The first terms, alongside a(n)*a(n+1)*a(n+2), are: %e A349227 n a(n) a(n)*a(n+1)*a(n+2) %e A349227 -- ---- ------------------ %e A349227 1 1 1 %e A349227 2 1 2 %e A349227 3 1 4 %e A349227 4 2 8 %e A349227 5 2 12 %e A349227 6 2 6 %e A349227 7 3 3 %e A349227 8 1 5 %e A349227 9 1 10 %e A349227 10 5 20 %o A349227 (PARI) s=0; pp=p=1; for (n=1, 86, for (v=1, oo, if (!bittest(s, q=pp*p*v), print1 (pp", "); s+=2^q; pp=p; p=v; break))) %o A349227 (Python) %o A349227 def aupton(terms): %o A349227 alst, pset = [1, 1], set() %o A349227 for n in range(3, terms+1): %o A349227 p = p2 = alst[-1]*alst[-2] %o A349227 while p in pset: p += p2 %o A349227 alst.append(p//p2); pset.add(p) %o A349227 return alst %o A349227 print(aupton(86)) # _Michael S. Branicky_, Nov 12 2021 %Y A349227 Cf. A088177, A349228. %K A349227 nonn %O A349227 1,4 %A A349227 _Rémy Sigrist_, Nov 11 2021