cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349227 Lexicographically earliest sequence of positive integers such that the products of three consecutive terms are all distinct.

This page as a plain text file.
%I A349227 #12 Aug 29 2024 17:13:49
%S A349227 1,1,1,2,2,2,3,1,1,5,2,2,4,3,3,1,5,5,2,3,3,3,5,4,2,4,6,3,3,7,1,1,11,2,
%T A349227 2,7,1,5,11,2,3,7,4,2,8,5,3,5,6,5,6,7,3,5,9,5,6,8,2,7,5,4,5,8,5,7,5,7,
%U A349227 9,3,3,11,1,7,7,2,11,4,3,9,6,4,6,7,6,7
%N A349227 Lexicographically earliest sequence of positive integers such that the products of three consecutive terms are all distinct.
%C A349227 This sequence has similarities with A088177; here we consider products of three consecutive terms, there products of two consecutive terms.
%H A349227 Rémy Sigrist, <a href="/A349227/b349227.txt">Table of n, a(n) for n = 1..10000</a>
%e A349227 The first terms, alongside a(n)*a(n+1)*a(n+2), are:
%e A349227   n   a(n)  a(n)*a(n+1)*a(n+2)
%e A349227   --  ----  ------------------
%e A349227    1     1                   1
%e A349227    2     1                   2
%e A349227    3     1                   4
%e A349227    4     2                   8
%e A349227    5     2                  12
%e A349227    6     2                   6
%e A349227    7     3                   3
%e A349227    8     1                   5
%e A349227    9     1                  10
%e A349227   10     5                  20
%o A349227 (PARI) s=0; pp=p=1; for (n=1, 86, for (v=1, oo, if (!bittest(s, q=pp*p*v), print1 (pp", "); s+=2^q; pp=p; p=v; break)))
%o A349227 (Python)
%o A349227 def aupton(terms):
%o A349227     alst, pset = [1, 1], set()
%o A349227     for n in range(3, terms+1):
%o A349227         p = p2 = alst[-1]*alst[-2]
%o A349227         while p in pset: p += p2
%o A349227         alst.append(p//p2); pset.add(p)
%o A349227     return alst
%o A349227 print(aupton(86)) # _Michael S. Branicky_, Nov 12 2021
%Y A349227 Cf. A088177, A349228.
%K A349227 nonn
%O A349227 1,4
%A A349227 _Rémy Sigrist_, Nov 11 2021