This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349239 #13 Dec 19 2024 11:46:19 %S A349239 0,2,3,4,8,6,12,11,9,18,16,15,24,14,28,24,22,36,22,36,32,22,44,37,33, %T A349239 55,32,54,47,33,55,48,44,66,35,70,58,51,86,48,83,71,48,83,71,64,99,51, %U A349239 86,74,67,102,64,99,87,56,112,92,80,136,74,130,110,72,128,108 %N A349239 a(n) = n + (reversal of digits in the Zeckendorf representation of n). %H A349239 Kevin Ryde, <a href="/A349239/b349239.txt">Table of n, a(n) for n = 0..10000</a> %H A349239 Kevin Ryde, <a href="/A349238/a349238.gp.txt">PARI/GP Code</a> %F A349239 a(n) = n + A349238(n). %F A349239 a(n) = 2*n - A349240(n). %o A349239 (PARI) \\ See links. %o A349239 (Python) # Using functions NumToFib and RevFibToNum from A349238. %o A349239 n, a = 0, 0 %o A349239 print(a + a, end = ", ") %o A349239 while n < 65: %o A349239 n += 1 %o A349239 print(n + RevFibToNum(NumToFib(n)), end = ", ") # _A.H.M. Smeets_, Nov 14 2021 %Y A349239 Cf. A189920 (Zeckendorf digits), A349238 (reverse), A349240 (reverse and subtract), A348570 (Lychrels). %Y A349239 Other bases: A055944 (binary), A056964 (decimal). %K A349239 base,easy,nonn %O A349239 0,2 %A A349239 _Kevin Ryde_, Nov 11 2021