This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349240 #17 Dec 19 2024 11:46:19 %S A349240 0,0,1,2,0,4,0,3,7,0,4,7,0,12,0,6,10,-2,14,2,8,20,0,9,15,-5,20,0,9,25, %T A349240 5,14,20,0,33,0,14,23,-10,30,-3,11,36,3,17,26,-7,43,10,24,33,0,40,7, %U A349240 21,54,0,22,36,-18,46,-8,14,54,0,22,36,-18,62,8,30,44 %N A349240 a(n) = n - (reversal of digits in the Zeckendorf representation of n). %H A349240 Kevin Ryde, <a href="/A349240/b349240.txt">Table of n, a(n) for n = 0..10000</a> %H A349240 Kevin Ryde, <a href="/A349238/a349238.gp.txt">PARI/GP Code</a> %F A349240 a(n) = n - A349238(n). %F A349240 a(n) = 2*n - A349239(n). %o A349240 (PARI) \\ See links. %o A349240 (Python) # Using functions NumToFib and RevFibToNum from A349238. %o A349240 n, a = 0, 0 %o A349240 print(a - a, end = ", ") %o A349240 while n < 71: %o A349240 n += 1 %o A349240 print(n - RevFibToNum(NumToFib(n)), end = ", ") # _A.H.M. Smeets_, Nov 14 2021 %Y A349240 Cf. A189920 (Zeckendorf digits), A349238 (reverse), A349239 (reverse and add). %Y A349240 Cf. A094202 (indices of 0's). %Y A349240 Other bases: A055945 (binary), A056965 (decimal). %K A349240 base,easy,sign %O A349240 0,4 %A A349240 _Kevin Ryde_, Nov 11 2021