cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349247 Least n-digit number k with only odd digits such that the k-th triangular number also has only odd digits.

Original entry on oeis.org

1, 13, 177, 1777, 15173, 135173, 3397973, 13535137, 135157537, 1193111377, 11979759377, 119595919137, 1195991117973, 11979931335173, 119777591993777, 1199999593111377, 11977793913551137, 119593573333335733, 1195935733333335733, 11977593393931151137, 119759371717733717537
Offset: 1

Views

Author

M. F. Hasler, Nov 23 2021

Keywords

Comments

It appears that all a(n), n > 9, have initial digits "119".
It also appears that the sequence of digits of the terms converges to a limit, (1, 1, 9, 3, 1, ...). Can this be proved or disproved?

Crossrefs

Cf. A000217 (triangular numbers), A014261 (numbers with only odd digits), A117960 (triangular numbers with only odd digits), A349243 (indices of the former), A347475 (such indices with only odd digits), A355277 (largest such k-digit term).

Programs

  • PARI
    apply( A349247(n)=A347475_next(10^n\9), [1..15]) \\ Edited (moved function body to A347475) by M. F. Hasler, Sep 13 2022
    
  • Python
    from itertools import product
    def A349247(n):
        for a in product('13579',repeat=n):
            if set(str((m:=int(''.join(a)))*(m+1)>>1)) <= {'1', '3', '5', '7', '9'}:
                return m # Chai Wah Wu, Sep 08 2022
    
  • Python
    A349247 = lambda n: next_A347475(10**n//9) # M. F. Hasler, Sep 10 2022

Formula

a(n) = min { k in A347475 | k >= 10^(n-1) }.