This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349271 #16 Oct 13 2023 06:49:04 %S A349271 1,1,1,1,1,1,1,2,3,2,2,4,8,11,5,2,4,16,46,57,16,1,6,30,128,352,361,61, %T A349271 2,8,46,272,1280,3362,2763,272,2,8,64,522,3522,16384,38528,24611,1385, %U A349271 2,12,96,904,7970,55744,249856,515086,250737,7936 %N A349271 Array A(n, k) that generalizes Euler numbers, class numbers, and tangent numbers, read by ascending antidiagonals. %H A349271 William Y. C. Chen, Neil J. Y. Fan, and Jeffrey Y. T. Jia, <a href="http://dx.doi.org/10.1090/S0025-5718-2011-02520-2">The generating function for the Dirichlet series Lm(s)</a>, Mathematics of Computation, Vol. 81, No. 278, pp. 1005-1023, April 2012. %H A349271 Ruth Lawrence and Don Zagier, <a href="https://doi.org/10.4310/AJM.1999.v3.n1.a5">Modular forms and quantum invariants of 3-manifolds</a>, Asian J. Math. 3 (1999), no. 1, 93-107. %H A349271 D. Shanks, <a href="http://dx.doi.org/10.1090/S0025-5718-1967-0223295-5">Generalized Euler and class numbers</a>, Math. Comp. 21 (1967) 689-694. %H A349271 D. Shanks, <a href="http://dx.doi.org/10.1090/S0025-5718-68-99652-X">Corrigendum: Generalized Euler and class numbers</a>, Math. Comp. 22, (1968) 699. %H A349271 D. Shanks, <a href="/A000003/a000003.pdf">Generalized Euler and class numbers</a>, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy] %e A349271 Seen as an array: %e A349271 [1] 1, 1, 1, 2, 5, 16, 61, 272, ... [A000111] %e A349271 [2] 1, 1, 3, 11, 57, 361, 2763, 24611, ... [A001586] %e A349271 [3] 1, 2, 8, 46, 352, 3362, 38528, 515086, ... [A007289] %e A349271 [4] 1, 4, 16, 128, 1280, 16384, 249856, 4456448, ... [A349264] %e A349271 [5] 2, 4, 30, 272, 3522, 55744, 1066590, 23750912, ... [A349265] %e A349271 [6] 2, 6, 46, 522, 7970, 152166, 3487246, 93241002, ... [A001587] %e A349271 [7] 1, 8, 64, 904, 15872, 355688, 9493504, 296327464, ... [A349266] %e A349271 [8] 2, 8, 96, 1408, 29184, 739328, 22634496, 806453248, ... [A349267] %e A349271 [9] 2, 12, 126, 2160, 49410, 1415232, 48649086, 1951153920, ... [A349268] %e A349271 . %e A349271 Seen as a triangle: %e A349271 [1] 1; %e A349271 [2] 1, 1; %e A349271 [3] 1, 1, 1; %e A349271 [4] 1, 2, 3, 2; %e A349271 [5] 2, 4, 8, 11, 5; %e A349271 [6] 2, 4, 16, 46, 57, 16; %e A349271 [7] 1, 6, 30, 128, 352, 361, 61; %e A349271 [8] 2, 8, 46, 272, 1280, 3362, 2763, 272; %e A349271 [9] 2, 8, 64, 522, 3522, 16384, 38528, 24611, 1385; %Y A349271 A235605 (array generalized Euler secant numbers). %Y A349271 A235606 (array generalized Euler tangent numbers). %Y A349271 A349264 (overview generating functions). %Y A349271 Rows: A000111, A001586, A007289, A349265, A001587, A349266, A349267, A349268. %Y A349271 Columns: A000003 (class numbers), A000061, A000233, A000176, A000362, A000488, A000508, A000518. %Y A349271 Cf. A349263 (main diagonal). %K A349271 nonn,tabl %O A349271 1,8 %A A349271 _Peter Luschny_, Nov 23 2021