This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349273 #21 Oct 11 2024 13:20:30 %S A349273 1,1,1,2,2,2,1,3,2,2,4,3,2,4,2,2,2,4,4,4,3,4,2,2,2,3,4,2,4,2,6,4,2,4, %T A349273 2,6,4,5,2,2,2,6,4,2,3,6,8,4,2,4,2,4,4,4,1,2,2,8,4,4,4,2,6,4,4,2,8,4, %U A349273 2,4,2,2,4,4,8,2,2,6,3,4,4,8,4,4,4,4,2,4,4,8,2,2,6,6,4 %N A349273 Number of odd divisors of prime(n) - 1. %C A349273 a(n) is odd if and only if prime(n) is in A249410. - _Jianing Song_, Nov 14 2021 %H A349273 Robert Israel, <a href="/A349273/b349273.txt">Table of n, a(n) for n = 1..10000</a> %F A349273 a(n) = A001227(A006093(n)). %p A349273 nod:= n -> numtheory:-tau(n/2^padic:-ordp(n,2)): %p A349273 map(nod, [seq(ithprime(i)-1,i=1..100)]); # _Robert Israel_, Oct 11 2024 %t A349273 a[n_] := DivisorSigma[0, (k = Prime[n] - 1)/2^IntegerExponent[k, 2]]; Array[a, 100] (* _Amiram Eldar_, Jun 03 2021 *) %t A349273 Count[Divisors[#-1],_?OddQ]&/@Prime[Range[100]] (* _Harvey P. Dale_, Jan 22 2024 *) %o A349273 (Magma) [NumberOfDivisors(p-1)/Valuation(2*p-2, 2): p in PrimesUpTo(500)]; %o A349273 (Python) %o A349273 from sympy import divisors, prime %o A349273 def a(n): return sum(d%2 for d in divisors(prime(n)-1)) %o A349273 print([a(n) for n in range(1, 96)]) # _Michael S. Branicky_, Jul 04 2021 %o A349273 (PARI) a(n) = sumdiv(prime(n)-1, d, d%2); \\ _Michel Marcus_, Dec 18 2021 %Y A349273 Cf. A000040, A001227, A006093, A249410. %K A349273 nonn,easy %O A349273 1,4 %A A349273 _Juri-Stepan Gerasimov_, Nov 12 2021