A349298 Positions k in row n of triangles S(n,k) = T(n,k) = 0, where A054521 = S and A349297 = T, or 0 if there are no such k.
0, 0, 0, 0, 5, 0, 7, 0, 0, 5, 11, 0, 13, 7, 5, 10, 0, 17, 0, 19, 5, 15, 7, 14, 11, 23, 0, 5, 10, 15, 20, 25, 13, 0, 7, 21, 29, 5, 25, 31, 0, 11, 22, 17, 5, 7, 10, 14, 15, 20, 21, 25, 28, 30, 35, 0, 37, 19, 13, 26, 5, 15, 25, 35, 41, 7, 35, 43, 11, 33, 5, 10, 20, 25, 35, 40
Offset: 1
Examples
Table T(n,k) for 1 <= n <= 16, replacing 0 with "." and 1 with "*", showing terms in row n of this sequence. Rows with no terms are replaced by 0: 1: . 2: . * 3: . . * 4: . * . * 5: . . . . 5 6: . * * * . * 7: . . . . . . 7 8: . * . * . * . * 9: . . * . . * . . * 10: . * . * 5 * . * . * 11: . . . . . . . . . . 11 12: . * * * . * . * * * . * 13: . . . . . . . . . . . . 13 14: . * . * . * 7 * . * . * . * 15: . . * . 5 * . . * 10 . * . . * 16: . * . * . * . * . * . * . * . * --------------------------------------------------- n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Hence, row 5 = {5}, row 7 = {7}, row 11 = {11}, row 13 = {13}, row 14 = {7}, row 15 = {5, 10}, and all other rows 1 <= n <= 16 have no terms, thus are assigned 0 by definition.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10635 (rows 1 <= n <= 600, flattened)
- Michael De Vlieger, 1024-pixel bitmap plotting (n, T(n,k)) in black, otherwise white including for rows containing 0.
Programs
-
Mathematica
With[{nn = 45}, Table[If[Length[#] == 0, {0}, #] &@ Select[Array[# Boole[Xor[Or[Mod[#, 2] == Mod[n, 2] == 0, Mod[#, 3] == Mod[n, 3] == 0], GCD[n, #] != 1]] &, n], # > 0 &], {n, nn}]] // Flatten (* Michael De Vlieger, Dec 08 2021 *) With[{s = Merge[Map[#1 -> #2 & @@ # &, Position[ImageData[#], 0.]], Identity]}, Array[If[KeyExistsQ[s, #], Lookup[s, #], {0}] &, ImageDimensions[#][[-1]]] // Flatten] &@ Import["https://oeis.org/A349298/a349298.png"] (* Generate 1024 rows stored in the bitmap image, Michael De Vlieger, Dec 08 2021 *)
Comments