cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349321 Numbers k such that k-1, k+1, 2k-1, 2k+1, 3k-1, 3k+1, 4k-1, 4k+1, 5k-1, and 5k+1 are all primes.

Original entry on oeis.org

100803789240, 441913177860, 1768738337520, 3906037699410, 5988326187690, 6266477200830, 6905441609220, 6973884137220, 14323608903450, 17683172090430, 20047266723330, 23371434572640, 27904703386560, 29484744885750, 31141493827290, 33202639844220, 34645262968470
Offset: 1

Views

Author

Jon E. Schoenfield, Nov 14 2021

Keywords

Comments

All terms are multiples of 2*3*5*7*11 = 2310.
From Jon E. Schoenfield, Mar 21 2022: (Start)
Each term is congruent to one of only
1 residue modulo 2*3*5*7*11 = 2310 (0.04329%),
3 residues modulo 2*3*5*7*11*13 = 30030 (0.00999%),
21 residues modulo 2*3*5*7*...*17 = 510510 (0.00411%),
189 residues modulo 2*3*5*7*...*19 = 9699690 (0.00195%),
2457 residues modulo 2*3*5*7*...*23 = 223092870 (0.00110%),
46683 residues modulo 2*3*5*7*...*29 = 6469693230 (0.00072%),
980343 residues modulo 2*3*5*7*...*31 = 200560490130 (0.00049%), etc.;
making use of these can allow more efficient searching for terms of the sequence.
The Magma program (see Links) generates a list of the possible residues modulo 2*3*5*7*...*31 and tests only numbers having one of those residues. (Note that the program, when run on the Online Magma Calculator, generates only the first three terms of the sequence before being terminated on reaching the 120-second time limit.) (End)

Crossrefs

Programs

  • PARI
    is_ok(k)=for(j=1,5, if(!isprime(j*k-1), return(0)); if(!isprime(j*k+1), return(0));); return(1); \\ Joerg Arndt, Nov 15 2021