cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349338 Dirichlet convolution of A000010 (Euler totient phi) with A080339 (characteristic function of noncomposite numbers).

This page as a plain text file.
%I A349338 #21 Jun 21 2025 11:50:14
%S A349338 1,2,3,3,5,5,7,6,8,9,11,8,13,13,14,12,17,14,19,14,20,21,23,16,24,25,
%T A349338 24,20,29,22,31,24,32,33,34,22,37,37,38,28,41,32,43,32,38,45,47,32,48,
%U A349338 44,50,38,53,42,54,40,56,57,59,36,61,61,54,48,64,52,67,50,68,58,71,44,73,73,68,56,76,62,79,56,72,81
%N A349338 Dirichlet convolution of A000010 (Euler totient phi) with A080339 (characteristic function of noncomposite numbers).
%C A349338 Möbius transform of A230593.
%C A349338 The number of integers k from 1 to n such that gcd(n, k) is a noncomposite number. - _Amiram Eldar_, Jun 21 2025
%H A349338 Antti Karttunen, <a href="/A349338/b349338.txt">Table of n, a(n) for n = 1..20000</a>
%F A349338 a(n) = Sum_{d|n} A000010(n/d) * A080339(d).
%F A349338 a(n) = Sum_{d|n} A008683(n/d) * A230593(d).
%F A349338 a(n) = Sum_{d|n} A349435(n/d) * A348976(d).
%F A349338 a(n) = A000010(n) + A117494(n). [Because A117494 is the Möbius transform of A069359]
%F A349338 For all n >= 1, a(A005117(n)) = A348976(A005117(n)).
%F A349338 Sum_{k=1..n} a(k) ~ 3 * (1 + A085548) * n^2 / Pi^2. - _Vaclav Kotesovec_, Nov 20 2021
%t A349338 a[n_] := DivisorSum[n, Boole[!CompositeQ[#]] * EulerPhi[n/#] &]; Array[a, 100] (* _Amiram Eldar_, Nov 17 2021 *)
%o A349338 (PARI) A349338(n) = sumdiv(n, d, eulerphi(n/d)*((1==d)||isprime(d)));
%o A349338 (PARI) a(n) = {my(f = factor(n), p = f[,1], e = f[,2]); n * vecprod(apply(x -> 1-1/x, p)) * (1 + vecsum(apply(x -> 1/x, p - vector(#e, i, e[i] == 1)~)));} \\ _Amiram Eldar_, Jun 21 2025
%Y A349338 Cf. A000010, A005117, A008683, A069359, A080339, A085548, A117494, A230593, A348976, A349435.
%K A349338 nonn
%O A349338 1,2
%A A349338 _Antti Karttunen_, Nov 17 2021