cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349349 Sum of A252463 and its Dirichlet inverse, where A252463 shifts the prime factorization of odd numbers one step towards smaller primes and divides even numbers by two.

This page as a plain text file.
%I A349349 #17 Apr 21 2022 09:14:59
%S A349349 2,0,0,1,0,4,0,3,4,6,0,8,0,10,12,7,0,8,0,13,20,14,0,15,9,22,8,19,0,14,
%T A349349 0,15,28,26,30,19,0,34,44,25,0,18,0,29,12,38,0,28,25,21,52,37,0,24,42,
%U A349349 35,68,46,0,28,0,58,20,31,66,30,0,47,76,32,0,38,0,62,18,55,70,30,0,47,16,74,0,36,78,82,92,55
%N A349349 Sum of A252463 and its Dirichlet inverse, where A252463 shifts the prime factorization of odd numbers one step towards smaller primes and divides even numbers by two.
%C A349349 Question: Are there any negative terms? All terms in range 1 .. 2^23 are nonnegative. (See also A349126). - _Antti Karttunen_, Apr 20 2022
%H A349349 Antti Karttunen, <a href="/A349349/b349349.txt">Table of n, a(n) for n = 1..20000</a>
%H A349349 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A349349 a(n) = A252463(n) + A349348(n).
%F A349349 a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1<d<n} A252463(d) * A349348(n/d).
%F A349349 For all n >= 1, a(2n-1) = A349126(2n-1).
%o A349349 (PARI)
%o A349349 up_to = 20000;
%o A349349 DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
%o A349349 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
%o A349349 A252463(n) = if(!(n%2),n/2,A064989(n));
%o A349349 v349348 = DirInverseCorrect(vector(up_to,n,A252463(n)));
%o A349349 A349348(n) = v349348[n];
%o A349349 A349349(n) = (A252463(n)+A349348(n));
%Y A349349 Coincides with A349126 on odd numbers.
%Y A349349 Cf. A064989, A252463, A349348.
%Y A349349 Cf. also A323365, A323412, A323894, A349135, A353336.
%K A349349 nonn
%O A349349 1,1
%A A349349 _Antti Karttunen_, Nov 15 2021