cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349352 Sum of A006368, "the amusical permutation", and its Dirichlet inverse.

This page as a plain text file.
%I A349352 #9 Nov 25 2021 17:37:56
%S A349352 2,0,0,9,0,12,0,9,4,24,0,24,0,30,16,27,0,42,0,30,20,48,0,21,16,60,20,
%T A349352 51,0,54,0,45,32,78,40,30,0,84,40,51,0,90,0,78,52,102,0,96,25,90,52,
%U A349352 84,0,90,64,57,56,132,0,27,0,138,74,99,80,138,0,111,68,114,0,114,0,168,68,132,80,150,0,138,61,186,0
%N A349352 Sum of A006368, "the amusical permutation", and its Dirichlet inverse.
%C A349352 The first negative term is a(2520) = -918.
%H A349352 Antti Karttunen, <a href="/A349352/b349352.txt">Table of n, a(n) for n = 1..20000</a>
%F A349352 a(n) = A006368(n) + A349351(n).
%F A349352 a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1<d<n} A006368(d) * A349351(n/d).
%o A349352 (PARI)
%o A349352 up_to = 20000;
%o A349352 DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
%o A349352 A006368(n) = ((3*n)+(n%2))\(2+((n%2)*2));
%o A349352 v349351 = DirInverseCorrect(vector(up_to,n,A006368(n)));
%o A349352 A349351(n) = v349351[n];
%o A349352 A349352(n) = (A006368(n)+A349351(n));
%Y A349352 Cf. A006368, A349351, A349369, A349378.
%K A349352 sign
%O A349352 1,1
%A A349352 _Antti Karttunen_, Nov 15 2021