cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349355 Dirichlet convolution of A003958 with A063441 (Dirichlet inverse of A003959), where A003958 and A003959 are fully multiplicative with a(p) = p-1 and p+1 respectively.

This page as a plain text file.
%I A349355 #17 Nov 26 2021 08:16:10
%S A349355 1,-2,-2,-2,-2,4,-2,-2,-4,4,-2,4,-2,4,4,-2,-2,8,-2,4,4,4,-2,4,-8,4,-8,
%T A349355 4,-2,-8,-2,-2,4,4,4,8,-2,4,4,4,-2,-8,-2,4,8,4,-2,4,-12,16,4,4,-2,16,
%U A349355 4,4,4,4,-2,-8,-2,4,8,-2,4,-8,-2,4,4,-8,-2,8,-2,4,16,4,4,-8,-2,4,-16,4,-2,-8,4,4,4,4,-2,-16
%N A349355 Dirichlet convolution of A003958 with A063441 (Dirichlet inverse of A003959), where A003958 and A003959 are fully multiplicative with a(p) = p-1 and p+1 respectively.
%C A349355 Multiplicative because both A003958 and A063441 are.
%C A349355 In Dirichlet ring this sequence works as a kind of replacement operator which replaces the factor A003959 with factor A003958. For example, convolving this with A003968 (the Möbius transform of A003959) produces A003966, the Möbius transform of A003958.
%H A349355 Antti Karttunen, <a href="/A349355/b349355.txt">Table of n, a(n) for n = 1..20000</a>
%H A349355 Wikipedia, <a href="https://en.wikipedia.org/wiki/Dirichlet_convolution">Dirichlet convolution</a>
%F A349355 a(n) = Sum_{d|n} A003958(n/d) * A063441(d).
%F A349355 Multiplicative with a(p^e) = -2*(p-1)^(e-1). - _Amiram Eldar_, Nov 16 2021
%t A349355 f[p_, e_] := -2*(p - 1)^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Nov 16 2021 *)
%o A349355 (PARI)
%o A349355 A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
%o A349355 A063441(n) = (moebius(n)*sigma(n)); \\ Also Dirichlet inverse of A003959.
%o A349355 A349355(n) = sumdiv(n,d,A003958(n/d)*A063441(d));
%Y A349355 Cf. A003958, A003959, A003966, A003968, A063441, A349356 (Dirichlet inverse), A349357 (sum with it).
%Y A349355 Cf. also A349382.
%K A349355 sign,mult
%O A349355 1,2
%A A349355 _Antti Karttunen_, Nov 16 2021