cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349356 Dirichlet convolution of A003959 with A097945 (Dirichlet inverse of A003958), where A003958 and A003959 are fully multiplicative with a(p) = p-1 and p+1 respectively.

This page as a plain text file.
%I A349356 #19 Nov 27 2021 11:04:06
%S A349356 1,2,2,6,2,4,2,18,8,4,2,12,2,4,4,54,2,16,2,12,4,4,2,36,12,4,32,12,2,8,
%T A349356 2,162,4,4,4,48,2,4,4,36,2,8,2,12,16,4,2,108,16,24,4,12,2,64,4,36,4,4,
%U A349356 2,24,2,4,16,486,4,8,2,12,4,8,2,144,2,4,24,12,4,8,2,108,128,4,2,24,4,4,4,36,2,32,4,12,4
%N A349356 Dirichlet convolution of A003959 with A097945 (Dirichlet inverse of A003958), where A003958 and A003959 are fully multiplicative with a(p) = p-1 and p+1 respectively.
%C A349356 In Dirichlet ring this sequence works as a kind of replacement operator which replaces the factor A003958 with factor A003959. For example, convolving this with A349133 produces A349173.
%H A349356 Antti Karttunen, <a href="/A349356/b349356.txt">Table of n, a(n) for n = 1..20000</a>
%H A349356 Wikipedia, <a href="https://en.wikipedia.org/wiki/Dirichlet_convolution">Dirichlet convolution</a>
%F A349356 a(n) = Sum_{d|n} A003959(n/d) * A097945(d).
%F A349356 Multiplicative with a(p^e) = 2*(p+1)^(e-1). - _Amiram Eldar_, Nov 16 2021
%t A349356 f[p_, e_] := 2*(p + 1)^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Nov 16 2021 *)
%o A349356 (PARI)
%o A349356 A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
%o A349356 A097945(n) = (moebius(n)*eulerphi(n)); \\ Also Dirichlet inverse of A003958.
%o A349356 A349356(n) = sumdiv(n,d,A003959(n/d)*A097945(d));
%Y A349356 Cf. A003958, A003959, A097945, A349355 (Dirichlet inverse), A349357 (sum with it).
%Y A349356 Cf. also A349133, A349173, A349381.
%K A349356 nonn,mult
%O A349356 1,2
%A A349356 _Antti Karttunen_, Nov 16 2021