cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349372 Dirichlet convolution of Kimberling's paraphrases (A003602) with tau (number of divisors, A000005).

This page as a plain text file.
%I A349372 #12 Nov 21 2021 10:17:07
%S A349372 1,3,4,6,5,12,6,10,12,15,8,24,9,18,22,15,11,36,12,30,27,24,14,40,22,
%T A349372 27,34,36,17,66,18,21,37,33,36,72,21,36,42,50,23,81,24,48,72,42,26,60,
%U A349372 36,66,52,54,29,102,50,60,57,51,32,132,33,54,90,28,57,111,36,66,67,108,38,120,39,63,104,72,63,126,42,75
%N A349372 Dirichlet convolution of Kimberling's paraphrases (A003602) with tau (number of divisors, A000005).
%H A349372 Antti Karttunen, <a href="/A349372/b349372.txt">Table of n, a(n) for n = 1..20000</a>
%F A349372 a(n) = Sum_{d|n} A003602(n/d) * A000005(d).
%t A349372 k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; a[n_] := DivisorSum[n, k[#] * DivisorSigma[0, n/#] &]; Array[a, 100] (* _Amiram Eldar_, Nov 16 2021 *)
%o A349372 (PARI)
%o A349372 A003602(n) = (1+(n>>valuation(n,2)))/2;
%o A349372 A349372(n) = sumdiv(n,d,A003602(n/d)*numdiv(d));
%Y A349372 Cf. A000005, A003602.
%Y A349372 Cf. A347954, A347955, A347956, A349136, A349370, A349371, A349373, A349374, A349375, A349390, A349431, A349444, A349447 for Dirichlet convolutions of other sequences with A003602.
%Y A349372 Cf. also A349392.
%K A349372 nonn
%O A349372 1,2
%A A349372 _Antti Karttunen_, Nov 15 2021