cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349380 Dirichlet convolution of A003415 (arithmetic derivative of n) with A349134 (Dirichlet inverse of Kimberling's paraphrases).

This page as a plain text file.
%I A349380 #16 Mar 01 2022 09:33:35
%S A349380 0,1,1,3,1,2,1,8,4,3,1,5,1,4,3,20,1,6,1,8,4,6,1,12,7,7,14,11,1,3,1,48,
%T A349380 6,9,5,14,1,10,7,20,1,4,1,17,8,12,1,28,10,13,9,20,1,18,7,28,10,15,1,6,
%U A349380 1,16,11,112,8,6,1,26,12,5,1,32,1,19,11,29,8,7,1,48,46,21,1,8,10,22,15,44,1,6,9,35,16
%N A349380 Dirichlet convolution of A003415 (arithmetic derivative of n) with A349134 (Dirichlet inverse of Kimberling's paraphrases).
%C A349380 Dirichlet convolution of A349394 with A349432.
%C A349380 Dirichlet convolution with A349136 gives A300251.
%H A349380 Antti Karttunen, <a href="/A349380/b349380.txt">Table of n, a(n) for n = 1..20000</a>
%F A349380 a(n) = Sum_{d|n} A003415(n/d) * A349134(d).
%F A349380 a(n) = Sum_{d|n} A349394(n/d) * A349432(d).
%o A349380 (PARI)
%o A349380 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
%o A349380 A003602(n) = (1+(n>>valuation(n,2)))/2;
%o A349380 memoA349134 = Map();
%o A349380 A349134(n) = if(1==n,1,my(v); if(mapisdefined(memoA349134,n,&v), v, v = -sumdiv(n,d,if(d<n,A003602(n/d)*A349134(d),0)); mapput(memoA349134,n,v); (v)));
%o A349380 A349380(n) = sumdiv(n,d,A003415(d)*A349134(n/d));
%Y A349380 Cf. A003415, A003602, A349134, A349394, A349432.
%Y A349380 Cf. also A300251, A347955, A349136, A349431.
%K A349380 sign,look
%O A349380 1,4
%A A349380 _Antti Karttunen_, Nov 21 2021