cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349381 Dirichlet convolution of A003961 with A349125 (Dirichlet inverse of A064989), where A003961 and A064989 are fully multiplicative sequences that shift the prime factorization of n one step towards larger and smaller primes respectively.

This page as a plain text file.
%I A349381 #13 Nov 26 2021 10:33:18
%S A349381 1,2,3,6,4,6,6,18,15,8,6,18,6,12,12,54,6,30,6,24,18,12,10,54,28,12,75,
%T A349381 36,8,24,8,162,18,12,24,90,10,12,18,72,6,36,6,36,60,20,10,162,66,56,
%U A349381 18,36,12,150,24,108,18,16,8,72,8,16,90,486,24,36,10,36,30,48,6,270,8,20,84,36,36,36,10,216,375,12
%N A349381 Dirichlet convolution of A003961 with A349125 (Dirichlet inverse of A064989), where A003961 and A064989 are fully multiplicative sequences that shift the prime factorization of n one step towards larger and smaller primes respectively.
%C A349381 Multiplicative because both A003961 and A349125 are.
%C A349381 Convolving this with A349127 gives A003972.
%H A349381 Antti Karttunen, <a href="/A349381/b349381.txt">Table of n, a(n) for n = 1..20000</a>
%H A349381 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A349381 a(n) = Sum_{d|n} A003961(n/d) * A349125(d).
%F A349381 a(n) = A349383(n) - A349382(n).
%o A349381 (PARI)
%o A349381 A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A349381 A064989(n) = { my(f = factor(n)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
%o A349381 A349125(n) = (moebius(n)*A064989(n));
%o A349381 A349381(n) = sumdiv(n,d,A003961(n/d)*A349125(d));
%Y A349381 Cf. A003961, A064989, A349125, A349382 (Dirichlet inverse), A349383 (sum with it).
%Y A349381 Cf. also A003972, A349127, and A349355, A349356 and A349384, A349385, and A349387.
%K A349381 nonn,mult
%O A349381 1,2
%A A349381 _Antti Karttunen_, Nov 17 2021