cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349382 Dirichlet convolution of A064989 with A346234 (Dirichlet inverse of A003961), where A003961 and A064989 are fully multiplicative sequences that shift the prime factorization of n one step towards larger and smaller primes respectively.

This page as a plain text file.
%I A349382 #12 Nov 26 2021 07:50:18
%S A349382 1,-2,-3,-2,-4,6,-6,-2,-6,8,-6,6,-6,12,12,-2,-6,12,-6,8,18,12,-10,6,
%T A349382 -12,12,-12,12,-8,-24,-8,-2,18,12,24,12,-10,12,18,8,-6,-36,-6,12,24,
%U A349382 20,-10,6,-30,24,18,12,-12,24,24,12,18,16,-8,-24,-8,16,36,-2,24,-36,-10,12,30,-48,-6,12,-8,20,36,12,36,-36
%N A349382 Dirichlet convolution of A064989 with A346234 (Dirichlet inverse of A003961), where A003961 and A064989 are fully multiplicative sequences that shift the prime factorization of n one step towards larger and smaller primes respectively.
%C A349382 Multiplicative because both A064989 and A346234 are.
%H A349382 Antti Karttunen, <a href="/A349382/b349382.txt">Table of n, a(n) for n = 1..20000</a>
%H A349382 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A349382 a(n) = Sum_{d|n} A064989(n/d) * A346234(d).
%F A349382 a(n) = A349383(n) - A349381(n).
%F A349382 Multiplicative with a(p^e) = -2 if p = 2, and prevprime(p)^e - nextprime(p) * prevprime(p)^(e-1) otherwise, where prevprime function is A151799 and nextprime function is A151800. - _Amiram Eldar_, Nov 17 2021
%t A349382 f[p_, e_] := If[p == 2, -2, NextPrime[p, -1]^e - NextPrime[p]*NextPrime[p, -1]^(e - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Nov 17 2021 *)
%o A349382 (PARI)
%o A349382 A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A349382 A064989(n) = { my(f = factor(n)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
%o A349382 A346234(n) = (moebius(n)*A003961(n));
%o A349382 A349382(n) = sumdiv(n,d,A064989(n/d)*A346234(d));
%Y A349382 Cf. A003961, A064989, A151799, A151800, A346234, A349381 (Dirichlet inverse), A349383 (sum with it).
%Y A349382 Cf. also A349355, A349356.
%K A349382 sign,mult
%O A349382 1,2
%A A349382 _Antti Karttunen_, Nov 17 2021