cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349384 Dirichlet convolution of A003961 with the Dirichlet inverse of A048673, where A003961 is fully multiplicative with a(p) = nextprime(p), and A048673(n) = (1+A003961(n))/2.

This page as a plain text file.
%I A349384 #11 Nov 26 2021 08:52:30
%S A349384 1,1,2,2,3,0,5,4,6,0,6,-2,8,0,0,8,9,-4,11,-3,0,0,14,-8,12,0,18,-5,15,
%T A349384 -12,18,16,0,0,0,-14,20,0,0,-12,21,-20,23,-6,-12,0,26,-24,30,-9,0,-8,
%U A349384 29,-24,0,-20,0,0,30,-24,33,0,-20,32,0,-24,35,-9,0,-30,36,-36,39,0,-18,-11,0,-32,41,-36,54,0,44
%N A349384 Dirichlet convolution of A003961 with the Dirichlet inverse of A048673, where A003961 is fully multiplicative with a(p) = nextprime(p), and A048673(n) = (1+A003961(n))/2.
%C A349384 Convolving this with A336840 gives A003973.
%H A349384 Antti Karttunen, <a href="/A349384/b349384.txt">Table of n, a(n) for n = 1..20000</a>
%H A349384 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A349384 a(n) = Sum_{d|n} A003961(n/d) * A323893(d).
%F A349384 a(n) = A349386(n) - A349385(n).
%o A349384 (PARI)
%o A349384 A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A349384 A048673(n) = (A003961(n)+1)/2;
%o A349384 memoA323893 = Map();
%o A349384 A323893(n) = if(1==n,1,my(v); if(mapisdefined(memoA323893,n,&v), v, v = -sumdiv(n,d,if(d<n,A048673(n/d)*A323893(d),0)); mapput(memoA323893,n,v); (v)));
%o A349384 A349384(n) = sumdiv(n,d,A003961(n/d)*A323893(d));
%Y A349384 Cf. A003961, A048673, A323893, A349385 (Dirichlet inverse), A349386 (sum with it).
%Y A349384 Cf. also A003973, A336840, A349572.
%K A349384 sign
%O A349384 1,3
%A A349384 _Antti Karttunen_, Nov 17 2021