cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349387 Dirichlet convolution of A003961 with A055615 (Dirichlet inverse of n), where A003961 is fully multiplicative with a(p) = nextprime(p).

This page as a plain text file.
%I A349387 #21 Dec 11 2024 20:17:48
%S A349387 1,1,2,3,2,2,4,9,10,2,2,6,4,4,4,27,2,10,4,6,8,2,6,18,14,4,50,12,2,4,6,
%T A349387 81,4,2,8,30,4,4,8,18,2,8,4,6,20,6,6,54,44,14,4,12,6,50,4,36,8,2,2,12,
%U A349387 6,6,40,243,8,4,4,6,12,8,2,90,6,4,28,12,8,8,4,54,250,2,6,24,4,4,4,18,8,20,16,18,12,6
%N A349387 Dirichlet convolution of A003961 with A055615 (Dirichlet inverse of n), where A003961 is fully multiplicative with a(p) = nextprime(p).
%C A349387 Multiplicative because A003961 and A055615 are.
%C A349387 Convolving this with A000010 gives A003972, and convolving this with A000203 gives A003973.
%C A349387 Multiplicative with a(p^e) = nextprime(p)^e - p * nextprime(p)^(e-1), where nextprime function is A151800. - _Amiram Eldar_, Nov 18 2021
%H A349387 Antti Karttunen, <a href="/A349387/b349387.txt">Table of n, a(n) for n = 1..20000</a>
%H A349387 <a href="/index/Pri#gaps">Index entries for primes, gaps between</a>
%H A349387 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A349387 a(n) = Sum_{d|n} A003961(n/d) * A055615(d).
%F A349387 For all n >= 1, a(A000040(n)) = A001223(n).
%t A349387 f[p_,e_] := (q = NextPrime[p])^e - p * q^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Nov 18 2021 *)
%o A349387 (PARI)
%o A349387 A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A349387 A055615(n) = (n*moebius(n));
%o A349387 A349387(n) = sumdiv(n,d,A003961(n/d)*A055615(d));
%Y A349387 Cf. A000040, A001223, A003961, A055615, A151800, A349388 (Dirichlet inverse), A349389 (sum with it), A378606 (Möbius transform).
%Y A349387 Cf. also A000010, A000203, A003972, A003973, A347236, A349381.
%K A349387 nonn,mult
%O A349387 1,3
%A A349387 _Antti Karttunen_, Nov 17 2021