This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349387 #21 Dec 11 2024 20:17:48 %S A349387 1,1,2,3,2,2,4,9,10,2,2,6,4,4,4,27,2,10,4,6,8,2,6,18,14,4,50,12,2,4,6, %T A349387 81,4,2,8,30,4,4,8,18,2,8,4,6,20,6,6,54,44,14,4,12,6,50,4,36,8,2,2,12, %U A349387 6,6,40,243,8,4,4,6,12,8,2,90,6,4,28,12,8,8,4,54,250,2,6,24,4,4,4,18,8,20,16,18,12,6 %N A349387 Dirichlet convolution of A003961 with A055615 (Dirichlet inverse of n), where A003961 is fully multiplicative with a(p) = nextprime(p). %C A349387 Multiplicative because A003961 and A055615 are. %C A349387 Convolving this with A000010 gives A003972, and convolving this with A000203 gives A003973. %C A349387 Multiplicative with a(p^e) = nextprime(p)^e - p * nextprime(p)^(e-1), where nextprime function is A151800. - _Amiram Eldar_, Nov 18 2021 %H A349387 Antti Karttunen, <a href="/A349387/b349387.txt">Table of n, a(n) for n = 1..20000</a> %H A349387 <a href="/index/Pri#gaps">Index entries for primes, gaps between</a> %H A349387 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A349387 a(n) = Sum_{d|n} A003961(n/d) * A055615(d). %F A349387 For all n >= 1, a(A000040(n)) = A001223(n). %t A349387 f[p_,e_] := (q = NextPrime[p])^e - p * q^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Nov 18 2021 *) %o A349387 (PARI) %o A349387 A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A349387 A055615(n) = (n*moebius(n)); %o A349387 A349387(n) = sumdiv(n,d,A003961(n/d)*A055615(d)); %Y A349387 Cf. A000040, A001223, A003961, A055615, A151800, A349388 (Dirichlet inverse), A349389 (sum with it), A378606 (Möbius transform). %Y A349387 Cf. also A000010, A000203, A003972, A003973, A347236, A349381. %K A349387 nonn,mult %O A349387 1,3 %A A349387 _Antti Karttunen_, Nov 17 2021