cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349388 Dirichlet convolution of A000027 with A346234 (Dirichlet inverse of A003961), where A003961 is fully multiplicative with a(p) = nextprime(p).

This page as a plain text file.
%I A349388 #19 Dec 11 2024 20:17:52
%S A349388 1,-1,-2,-2,-2,2,-4,-4,-6,2,-2,4,-4,4,4,-8,-2,6,-4,4,8,2,-6,8,-10,4,
%T A349388 -18,8,-2,-4,-6,-16,4,2,8,12,-4,4,8,8,-2,-8,-4,4,12,6,-6,16,-28,10,4,
%U A349388 8,-6,18,4,16,8,2,-2,-8,-6,6,24,-32,8,-4,-4,4,12,-8,-2,24,-6,4,20,8,8,-8,-4,16,-54,2,-6,-16,4,4,4
%N A349388 Dirichlet convolution of A000027 with A346234 (Dirichlet inverse of A003961), where A003961 is fully multiplicative with a(p) = nextprime(p).
%C A349388 Multiplicative because A000027 and A346234 are.
%H A349388 Antti Karttunen, <a href="/A349388/b349388.txt">Table of n, a(n) for n = 1..20000</a>
%H A349388 <a href="/index/Pri#gaps">Index entries for primes, gaps between</a>
%H A349388 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A349388 a(n) = Sum_{d|n} d * A346234(n/d).
%F A349388 For all n >= 1, a(A000040(n)) = -A001223(n).
%F A349388 Multiplicative with a(p^e) = p^e - nextprime(p) * p^(e-1), where nextprime function is A151800. - _Amiram Eldar_, Nov 18 2021
%t A349388 f[p_, e_] := p^e - NextPrime[p] * p^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Nov 18 2021 *)
%o A349388 (PARI)
%o A349388 A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A349388 A346234(n) = (moebius(n)*A003961(n));
%o A349388 A349388(n) = sumdiv(n,d,d*A346234(n/d));
%Y A349388 Cf. A000027, A000040, A001223, A003961, A151800, A346234, A349387 (Dirichlet inverse), A349389 (sum with it), A378607 (inverse Möbius transform).
%Y A349388 Cf. also A347238.
%K A349388 sign,mult
%O A349388 1,3
%A A349388 _Antti Karttunen_, Nov 17 2021