cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349392 Dirichlet convolution of A126760 with tau (number of divisors function).

This page as a plain text file.
%I A349392 #12 Nov 21 2021 10:18:02
%S A349392 1,3,3,6,4,9,5,10,6,12,6,18,7,15,12,15,8,18,9,24,15,18,10,30,16,21,10,
%T A349392 30,12,36,13,21,18,24,26,36,15,27,21,40,16,45,17,36,24,30,18,45,26,48,
%U A349392 24,42,20,30,35,50,27,36,22,72,23,39,30,28,40,54,25,48,30,78,26,60,27,45,48,54,44,63,29,60,15,48
%N A349392 Dirichlet convolution of A126760 with tau (number of divisors function).
%H A349392 Antti Karttunen, <a href="/A349392/b349392.txt">Table of n, a(n) for n = 1..20000</a>
%F A349392 a(n) = Sum_{d|n} A126760(n/d) * A000005(d).
%t A349392 f[n_] := 2 * Floor[(m = n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3])/6] + Mod[m, 3]; a[n_] := DivisorSum[n, f[#] * DivisorSigma[0, n/#] &]; Array[a, 100] (* _Amiram Eldar_, Nov 16 2021 *)
%o A349392 (PARI)
%o A349392 A126760(n) = {n&&n\=3^valuation(n, 3)<<valuation(n, 2); n%3+n\6*2}; \\ From A126760
%o A349392 A349392(n) = sumdiv(n,d,A126760(n/d)*numdiv(d));
%Y A349392 Cf. A000005, A126760.
%Y A349392 Cf. A347233, A347234, A349390, A349391, A349393, A349395 for other Dirichlet convolutions of A126760. And also A349372.
%K A349392 nonn
%O A349392 1,2
%A A349392 _Antti Karttunen_, Nov 15 2021