A349411 a(n) = prime j = A347113(i)-1 in order of appearance.
2, 5, 11, 23, 47, 3, 7, 13, 19, 17, 31, 37, 29, 59, 41, 83, 167, 43, 61, 53, 107, 67, 71, 73, 79, 89, 179, 359, 719, 1439, 2879, 97, 101, 103, 109, 113, 227, 131, 263, 127, 139, 137, 151, 157, 149, 163, 181, 173, 347, 191, 383, 199, 193, 211, 197, 223, 229, 233
Offset: 1
Keywords
Examples
s(1) = 1, thus j = s(1)+1 = 2, which is prime, therefore a(1) = 2. s(2) = 4; j = 5, thus a(2) = 5, etc.
Links
- Chris Caldwell's Prime Glossary, Cunningham chains.
- Michael De Vlieger, Log-log scatterplot of a(n), n=1..2^19, indicating prime j in red.
- Michael De Vlieger, Extended table of n, a(n) for n=1..45450
- Eric Weisstein's World of Mathematics, Cunningham Chain.
Programs
-
Mathematica
c[_] = 0; j = m = 2; m = 1 + {1}~Join~Reap[Do[If[IntegerQ @Log2[i], While[c[m] > 0, m++]]; Set[k, m]; While[Or[c[k] > 0, k == j, GCD[j, k] == 1], k++]; Sow[k]; Set[c[k], i]; j = k + 1, {i, 239}]][[-1, -1]]; Select[m, PrimeQ]
Comments