This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349426 #20 Dec 10 2021 05:55:14 %S A349426 3,8,30,144,90,840,840,5760,7280,45360,66528,7560,403200,657720, %T A349426 151200,3991680,7064640,2356200,43545600,82285632,34890240,1247400, %U A349426 518918400,1035365760,521080560,43243200,6706022400,14013679680,8034586560,1059458400 %N A349426 Irregular triangle read by rows: T(n,k) is the number of arrangements of n labeled children with exactly k nontrivial rounds; n >= 3, 1 <= k <= floor(n/3). %C A349426 A nontrivial round means the same as a ring or circle consisting of more than one child. %D A349426 R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999 (Sec. 5.2) %H A349426 Steven Finch, <a href="https://arxiv.org/abs/2111.14487">Rounds, Color, Parity, Squares</a>, arXiv:2111.14487 [math.CO], 2021. %F A349426 E.g.f.: (1 - x)^(-x*t) * exp(-x^2*t). %e A349426 Triangle starts: %e A349426 [3] 3; %e A349426 [4] 8; %e A349426 [5] 30; %e A349426 [6] 144, 90; %e A349426 [7] 840, 840; %e A349426 [8] 5760, 7280; %e A349426 [9] 45360, 66528, 7560; %e A349426 [10] 403200, 657720, 151200; %e A349426 [11] 3991680, 7064640, 2356200; %e A349426 [12] 43545600, 82285632, 34890240, 1247400; %e A349426 [13] 518918400, 1035365760, 521080560, 43243200; %e A349426 [14] 6706022400, 14013679680, 8034586560, 1059458400; %e A349426 ... %e A349426 For n = 6, there are 144 ways to make one round and 90 ways to make two rounds. %t A349426 f[k_, n_] := n! SeriesCoefficient[(1 - x)^(-x t) Exp[-x^2 t], {x, 0, n}, {t, 0, k}] %t A349426 Table[f[k, n], {n, 2, 14}, {k, 1, Floor[n/3]}] %Y A349426 Row sums give A066165 (variant of Stanley's children's game). %Y A349426 Column 1 gives A001048. %Y A349426 Right border element of row n is A166334(n/3) for each n divisible by 3. %Y A349426 Cf. A066166, A349280 (correspond to Stanley's original game). %K A349426 nonn,tabf %O A349426 3,1 %A A349426 _Steven Finch_, Nov 17 2021