This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349430 #28 Nov 23 2023 20:52:13 %S A349430 1,1,2,4,10,20,58,124,344,811,2071,4973,15454,36031,96212,237563, %T A349430 668695,1626751,4674373,11470722,31460456,81705943,224598113 %N A349430 Number of set partitions of [5n] into 5-element subsets {i, i+k, i+2k, i+3k, i+4k} with 1<=k<=n. %H A349430 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %e A349430 a(4) = 10: {{1,2,3,4,5}, {6,7,8,9,10}, {11,12,13,14,15}, {16,17,18,19,20}}, %e A349430 {{1,3,5,7,9}, {2,4,6,8,10}, {11,12,13,14,15}, {16,17,18,19,20}}, %e A349430 {{1,2,3,4,5}, {6,8,10,12,14}, {7,9,11,13,15}, {16,17,18,19,20}}, %e A349430 {{1,4,7,10,13}, {2,5,8,11,14}, {3,6,9,12,15}, {16,17,18,19,20}}, %e A349430 {{1,2,3,4,5}, {6,7,8,9,10}, {11,13,15,17,19}, {12,14,16,18,20}}, %e A349430 {{1,3,5,7,9}, {2,4,6,8,10}, {11,13,15,17,19}, {12,14,16,18,20}}, %e A349430 {{1,5,9,13,17}, {2,4,6,8,10}, {3,7,11,15,19}, {12,14,16,18,20}}, %e A349430 {{1,2,3,4,5}, {6,9,12,15,18}, {7,10,13,16,19}, {8,11,14,17,20}}, %e A349430 {{1,3,5,7,9}, {2,6,10,14,18}, {4,8,12,16,20}, {11,13,15,17,19}}, %e A349430 {{1,5,9,13,17}, {2,6,10,14,18}, {3,7,11,15,19}, {4,8,12,16,20}}. %p A349430 b:= proc(s, t) option remember; `if`(s={}, 1, (m-> add( %p A349430 `if`({seq(m-h*j, h=1..4)} minus s={}, b(s minus {seq(m-h*j, %p A349430 h=0..4)}, t), 0), j=1..min(t, iquo(m-1, 4))))(max(s))) %p A349430 end: %p A349430 a:= proc(n) option remember; forget(b): b({$1..5*n}, n) end: %p A349430 seq(a(n), n=0..10); %t A349430 b[s_, t_] := b[s, t] = If[s == {}, 1, Function[m, Sum[If[Union[Table[m - h*j, {h, 1, 4}] ~Complement~ s] == {}, b[s ~Complement~ Union[Table[m - h*j, {h, 0, 4}]], t], 0], {j, 1, Min[t, Quotient[m-1, 4]]}]][Max[s]]]; %t A349430 a[n_] := a[n] = b[Range[5n], n]; %t A349430 Table[Print[n, " ", a[n]]; a[n], {n, 0, 15}] (* _Jean-François Alcover_, May 16 2022, after _Alois P. Heinz_ *) %Y A349430 Cf. A000567 (number of subsets), A008587 (number of elements), A104431 (when k is unbounded), A337520. %Y A349430 Main diagonal of A360491. %K A349430 nonn,more %O A349430 0,3 %A A349430 _Alois P. Heinz_, Nov 17 2021 %E A349430 a(22) from _Alois P. Heinz_, Nov 23 2022