This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349431 #19 Jun 02 2025 15:24:52 %S A349431 1,-1,-1,-1,-2,1,-3,-1,-1,2,-5,1,-6,3,4,-1,-8,1,-9,2,6,5,-11,1,-2,6, %T A349431 -1,3,-14,-4,-15,-1,10,8,12,1,-18,9,12,2,-20,-6,-21,5,4,11,-23,1,-3,2, %U A349431 16,6,-26,1,20,3,18,14,-29,-4,-30,15,6,-1,24,-10,-33,8,22,-12,-35,1,-36,18,4,9,30,-12,-39,2,-1,20 %N A349431 Dirichlet convolution of A003602 (Kimberling's paraphrases) with A055615 (Dirichlet inverse of n). %C A349431 Dirichlet convolution of this sequence with A000010 gives A349136, which also proves the formula involving A023900. %C A349431 Convolution with A000203 gives A349371. %H A349431 Antti Karttunen, <a href="/A349431/b349431.txt">Table of n, a(n) for n = 1..20000</a> %F A349431 a(n) = Sum_{d|n} A003602(n/d) * A055615(d). %F A349431 a(n) = A023900(n) when n is a power of 2, and a(n) = A023900(n)/2 for all other numbers. %F A349431 a(n) = -A297381(n). %t A349431 k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; a[n_] := DivisorSum[n, # * MoebiusMu [#] * k[n/#] &]; Array[a, 100] (* _Amiram Eldar_, Nov 18 2021 *) %o A349431 (PARI) %o A349431 A003602(n) = (1+(n>>valuation(n,2)))/2; %o A349431 A055615(n) = (n*moebius(n)); %o A349431 A349431(n) = sumdiv(n,d,A003602(n/d)*A055615(d)); %o A349431 (PARI) %o A349431 A023900(n) = factorback(apply(p -> 1-p, factor(n)[, 1])); %o A349431 A349431(n) = if(!bitand(n,n-1),A023900(n),A023900(n)/2); %Y A349431 Sequence A297381 negated. %Y A349431 Cf. A003602, A023900, A055615, A297381, A349432 (Dirichlet inverse), A349433 (sum with it). %Y A349431 Cf. also A000010, A000203, A349136, A349371, and also A349444, A349447. %K A349431 sign %O A349431 1,5 %A A349431 _Antti Karttunen_, Nov 17 2021