cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349431 Dirichlet convolution of A003602 (Kimberling's paraphrases) with A055615 (Dirichlet inverse of n).

This page as a plain text file.
%I A349431 #19 Jun 02 2025 15:24:52
%S A349431 1,-1,-1,-1,-2,1,-3,-1,-1,2,-5,1,-6,3,4,-1,-8,1,-9,2,6,5,-11,1,-2,6,
%T A349431 -1,3,-14,-4,-15,-1,10,8,12,1,-18,9,12,2,-20,-6,-21,5,4,11,-23,1,-3,2,
%U A349431 16,6,-26,1,20,3,18,14,-29,-4,-30,15,6,-1,24,-10,-33,8,22,-12,-35,1,-36,18,4,9,30,-12,-39,2,-1,20
%N A349431 Dirichlet convolution of A003602 (Kimberling's paraphrases) with A055615 (Dirichlet inverse of n).
%C A349431 Dirichlet convolution of this sequence with A000010 gives A349136, which also proves the formula involving A023900.
%C A349431 Convolution with A000203 gives A349371.
%H A349431 Antti Karttunen, <a href="/A349431/b349431.txt">Table of n, a(n) for n = 1..20000</a>
%F A349431 a(n) = Sum_{d|n} A003602(n/d) * A055615(d).
%F A349431 a(n) = A023900(n) when n is a power of 2, and a(n) = A023900(n)/2 for all other numbers.
%F A349431 a(n) = -A297381(n).
%t A349431 k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; a[n_] := DivisorSum[n, # * MoebiusMu [#] * k[n/#] &]; Array[a, 100] (* _Amiram Eldar_, Nov 18 2021 *)
%o A349431 (PARI)
%o A349431 A003602(n) = (1+(n>>valuation(n,2)))/2;
%o A349431 A055615(n) = (n*moebius(n));
%o A349431 A349431(n) = sumdiv(n,d,A003602(n/d)*A055615(d));
%o A349431 (PARI)
%o A349431 A023900(n) = factorback(apply(p -> 1-p, factor(n)[, 1]));
%o A349431 A349431(n) = if(!bitand(n,n-1),A023900(n),A023900(n)/2);
%Y A349431 Sequence A297381 negated.
%Y A349431 Cf. A003602, A023900, A055615, A297381, A349432 (Dirichlet inverse), A349433 (sum with it).
%Y A349431 Cf. also A000010, A000203, A349136, A349371, and also A349444, A349447.
%K A349431 sign
%O A349431 1,5
%A A349431 _Antti Karttunen_, Nov 17 2021