cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349441 Dirichlet convolution of A057521 (powerful part of n) with A055615 (Dirichlet inverse of n).

This page as a plain text file.
%I A349441 #14 Nov 27 2021 11:04:22
%S A349441 1,-1,-2,2,-4,2,-6,0,6,4,-10,-4,-12,6,8,0,-16,-6,-18,-8,12,10,-22,0,
%T A349441 20,12,0,-12,-28,-8,-30,0,20,16,24,12,-36,18,24,0,-40,-12,-42,-20,-24,
%U A349441 22,-46,0,42,-20,32,-24,-52,0,40,0,36,28,-58,16,-60,30,-36,0,48,-20,-66,-32,44,-24,-70,0,-72,36,-40,-36
%N A349441 Dirichlet convolution of A057521 (powerful part of n) with A055615 (Dirichlet inverse of n).
%C A349441 Multiplicative because A055615 and A057521 are.
%C A349441 Convolving this with Euler phi (A000010) produces A349379.
%H A349441 Antti Karttunen, <a href="/A349441/b349441.txt">Table of n, a(n) for n = 1..20000</a>
%F A349441 a(n) = Sum_{d|n} A057521(n/d) * A055615(d).
%F A349441 Multiplicative with a(p^e) = 1 - p is e = 1, p^2 - p if e = 2, and 0 otherwise. - _Amiram Eldar_, Nov 19 2021
%t A349441 f[p_, e_] := Which[e > 2, 0, e == 2, p^2 - p, e == 1, 1 - p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Nov 19 2021 *)
%o A349441 (PARI)
%o A349441 A055615(n) = (n*moebius(n));
%o A349441 A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); }; \\ From A057521
%o A349441 A349441(n) = sumdiv(n,d,A057521(n/d)*A055615(d));
%Y A349441 Cf. A055615, A057521, A349442 (Dirichlet inverse), A349443 (sum with it).
%Y A349441 Cf. also A097945, A349379.
%K A349441 sign,mult,look
%O A349441 1,3
%A A349441 _Antti Karttunen_, Nov 18 2021