cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349444 Dirichlet convolution of A003602 (Kimberling's paraphrases) with A092673 (Dirichlet inverse of A001511).

This page as a plain text file.
%I A349444 #13 Dec 14 2021 12:13:42
%S A349444 1,-1,1,0,2,-1,3,0,3,-2,5,0,6,-3,4,0,8,-3,9,0,6,-5,11,0,10,-6,9,0,14,
%T A349444 -4,15,0,10,-8,12,0,18,-9,12,0,20,-6,21,0,12,-11,23,0,21,-10,16,0,26,
%U A349444 -9,20,0,18,-14,29,0,30,-15,18,0,24,-10,33,0,22,-12,35,0,36,-18,20,0,30,-12,39,0,27,-20,41,0,32
%N A349444 Dirichlet convolution of A003602 (Kimberling's paraphrases) with A092673 (Dirichlet inverse of A001511).
%H A349444 Antti Karttunen, <a href="/A349444/b349444.txt">Table of n, a(n) for n = 1..20000</a>
%F A349444 a(n) = Sum_{d|n} A003602(n/d) * A092673(d).
%t A349444 s[n_] := MoebiusMu[n] - If[OddQ[n], 0, MoebiusMu[n/2]]; k[n_] := (n/2^IntegerExponent[n, 2] + 1)/2; a[n_] := DivisorSum[n, s[#]*k[n/#] &]; Array[a, 100] (* _Amiram Eldar_, Nov 19 2021 *)
%o A349444 (PARI)
%o A349444 A003602(n) = (1+(n>>valuation(n,2)))/2;
%o A349444 A092673(n) = if(n<1, 0, moebius(n) - if( n%2, 0, moebius(n/2))); \\ From A092673
%o A349444 A349444(n) = sumdiv(n,d,A003602(n/d)*A092673(d));
%Y A349444 Cf. A001511, A003602, A008683, A092673, A349445 (Dirichlet inverse), A349446 (sum with it).
%Y A349444 Cf. also A349431, A349447.
%K A349444 sign
%O A349444 1,5
%A A349444 _Antti Karttunen_, Nov 18 2021