cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349448 Dirichlet convolution of A000265 (odd part of n) with A349134 (Dirichlet inverse of Kimberling's paraphrases).

This page as a plain text file.
%I A349448 #17 Dec 18 2021 23:38:42
%S A349448 1,0,1,0,2,0,3,0,2,0,5,0,6,0,0,0,8,0,9,0,0,0,11,0,6,0,4,0,14,0,15,0,0,
%T A349448 0,0,0,18,0,0,0,20,0,21,0,-2,0,23,0,12,0,0,0,26,0,0,0,0,0,29,0,30,0,
%U A349448 -3,0,0,0,33,0,0,0,35,0,36,0,-4,0,0,0,39,0,8,0,41,0,0,0,0,0,44,0,0,0,0,0,0,0,48,0
%N A349448 Dirichlet convolution of A000265 (odd part of n) with A349134 (Dirichlet inverse of Kimberling's paraphrases).
%H A349448 Antti Karttunen, <a href="/A349448/b349448.txt">Table of n, a(n) for n = 1..20000</a>
%F A349448 a(n) = Sum_{d|n} A000265(d) * A349134(n/d).
%F A349448 From _Bernard Schott_, Dec 18 2021: (Start)
%F A349448 If p is an odd prime, a(p) = (p-1)/2.
%F A349448 If n is even, a(n) = 0. (End)
%t A349448 k[n_] := (n / 2^IntegerExponent[n, 2] + 1)/2; kinv[1] = 1; kinv[n_] := kinv[n] = -DivisorSum[n, kinv[#]*k[n/#] &, # < n &]; a[n_] := DivisorSum[n, # / 2^IntegerExponent[#, 2] * kinv[n/#] &]; Array[a, 100] (* _Amiram Eldar_, Nov 19 2021 *)
%o A349448 (PARI)
%o A349448 A000265(n) = (n >> valuation(n, 2));
%o A349448 A003602(n) = (1+(n>>valuation(n,2)))/2;
%o A349448 memoA349134 = Map();
%o A349448 A349134(n) = if(1==n,1,my(v); if(mapisdefined(memoA349134,n,&v), v, v = -sumdiv(n,d,if(d<n,A003602(n/d)*A349134(d),0)); mapput(memoA349134,n,v); (v)));
%o A349448 A349448(n) = sumdiv(n,d,A000265(d)*A349134(n/d));
%Y A349448 Cf. A000265, A003602, A349134, A349447 (Dirichlet inverse).
%Y A349448 Cf. also A349432, A349445.
%K A349448 sign
%O A349448 1,5
%A A349448 _Antti Karttunen_, Nov 19 2021