cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349459 Least positive integer m such that the n numbers k^2*(k^2-1) (k=1..n) are pairwise distinct modulo m.

Original entry on oeis.org

1, 5, 7, 11, 13, 23, 23, 23, 23, 41, 41, 41, 41, 41, 41, 101, 101, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 229, 239, 239, 239, 383, 383, 383, 383, 383, 383, 383, 383, 401, 401, 557, 557, 557, 557, 557, 557, 557, 557, 557, 557, 557, 733, 733, 733, 733, 733, 733, 733
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 18 2021

Keywords

Comments

Conjecture: For any integer n > 1, the term a(n) is the least prime p > 2*n with p dividing a^2 + b^2 - 1 for no 1 <= a < b <= n.
This has been verified for all n = 2..15000.
Note that a^2*(a^2-1)-b^2*(b^2-1) = (a-b)*(a+b)*(a^2+b^2-1). For any positive integers m and n > 1, if k^2*(k^2-1) (k=1..n) are pairwise distinct modulo m, then it is easy to see that m > 2*n.

Examples

			a(2) = 5 since the two numbers 1^2*(1^2-1)=0 and 2^2*(2^2-1) = 12 are distinct modulo 5, but they are congruent modulo each of 1,2,3,4.
		

Crossrefs

Programs

  • Mathematica
    f[k_]:=f[k]=k^2*(k^2-1);
    U[m_,n_]:=U[m,n]=Length[Union[Table[Mod[f[k],m],{k,1,n}]]]
    tab={};s=1;Do[m=s;Label[bb];If[U[m,n]==n,s=m;tab=Append[tab,s];Goto[aa]];m=m+1;Goto[bb];Label[aa],{n,1,70}];Print[tab]