A349459 Least positive integer m such that the n numbers k^2*(k^2-1) (k=1..n) are pairwise distinct modulo m.
1, 5, 7, 11, 13, 23, 23, 23, 23, 41, 41, 41, 41, 41, 41, 101, 101, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 229, 239, 239, 239, 383, 383, 383, 383, 383, 383, 383, 383, 401, 401, 557, 557, 557, 557, 557, 557, 557, 557, 557, 557, 557, 733, 733, 733, 733, 733, 733, 733
Offset: 1
Keywords
Examples
a(2) = 5 since the two numbers 1^2*(1^2-1)=0 and 2^2*(2^2-1) = 12 are distinct modulo 5, but they are congruent modulo each of 1,2,3,4.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, On functions taking only prime values, J. Number Theory 133(2013), no.8, 2794-2812.
Programs
-
Mathematica
f[k_]:=f[k]=k^2*(k^2-1); U[m_,n_]:=U[m,n]=Length[Union[Table[Mod[f[k],m],{k,1,n}]]] tab={};s=1;Do[m=s;Label[bb];If[U[m,n]==n,s=m;tab=Append[tab,s];Goto[aa]];m=m+1;Goto[bb];Label[aa],{n,1,70}];Print[tab]
Comments