This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349460 #21 Sep 08 2022 08:46:26 %S A349460 0,4,400,40000,2244004,4000000,42224004,224400400,400000000,424442404, %T A349460 4222400400,22200404004,22440040000,40000000000,42444240400, %U A349460 422240040000,2220040400400,2244004000000,4000000000000,4024044024004,4244424040000,40244204444224,42224004000000 %N A349460 Squares composed of digits {0,2,4}. %C A349460 From _Marius A. Burtea_, Nov 18 2021: (Start) %C A349460 The sequence is infinite because if m > 0 is a term, then 100*m is also a term. %C A349460 Also, the squares of the numbers 20602, 2006002, 200060002, ..., (2*10^(2*k) + 6*10^k + 2), k >= 2, are 424442404, 4024044024004, 40024004400240004, 400024000440002400004, ... and have only the digits 0, 2 and 4 and are not divisible by 100. (End) %t A349460 Select[Range[0, 10^7, 2]^2, AllTrue[IntegerDigits[#], MemberQ[{0, 2, 4}, #1] &] &] (* _Amiram Eldar_, Nov 18 2021 *) %o A349460 (C#) %o A349460 for(ulong num = 0; num < 10000000; num++) %o A349460 { %o A349460 ulong sq = num * num; %o A349460 string sq1 = sq + ""; %o A349460 bool p = true; %o A349460 string un = "1356789"; %o A349460 for(int a = 0; a < un.Length; a++) %o A349460 { %o A349460 if(sq1.Contains(un[a])) %o A349460 { %o A349460 p = false; %o A349460 } %o A349460 } %o A349460 if(p) %o A349460 { %o A349460 Console.Write(sq1 + ", "); %o A349460 } %o A349460 } %o A349460 Console.WriteLine("done"); %o A349460 (Magma) [n : n in [s*s:s in [1..1500000]]|Set(Intseq(n)) subset {0,2,4}]; // _Marius A. Burtea_, Nov 18 2021 %o A349460 (Python) %o A349460 from itertools import islice, count %o A349460 def A349460(): return filter(lambda n: set(str(n)) <= {'0','2','4'},(n*n for n in count(0))) %o A349460 A349460_list = list(islice(A349460(),20)) # _Chai Wah Wu_, Nov 19 2021 %Y A349460 Subsequence of A000290 and A030098. %K A349460 nonn,base %O A349460 1,2 %A A349460 _Daniel Blam_, Nov 18 2021