This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349473 #5 Nov 19 2021 07:18:35 %S A349473 1,1,3,1,2,1,1,2,2,1,1,2,2,1,1,3,2,7,2,2,13,2,4,2,1,1,5,2,1,1,3,1,1,6, %T A349473 2,3,2,2,2,1,1,2,1,1,2,1,1,8,2,1,3,3,1,1,9,2,1,6,2,1,1,1,2,2,2,4,1,1, %U A349473 11,3,5,2,2,2,1,1,2,2,2,10,2,1,2,3,3,1,1,14 %N A349473 Irregular triangle read by rows: the n-th row contains the elements in the continued fraction of the harmonic mean of the divisors of n. %C A349473 For an odd prime p > 3, the p-th row has a length 3 with a(p, 1) = a(p, 2) = 1 and a(p, 3) = (p-1)/2. %C A349473 For a harmonic number m = A001599(k), the m-th row has a length 1 with a(k, 1) = A099377(m) = A001600(k). %e A349473 The first ten rows of the triangle are: %e A349473 1, %e A349473 1, 3, %e A349473 1, 2, %e A349473 1, 1, 2, 2, %e A349473 1, 1, 2, %e A349473 2, %e A349473 1, 1, 3, %e A349473 2, 7, 2, %e A349473 2, 13, %e A349473 2, 4, 2 %e A349473 ... %t A349473 row[n_] := ContinuedFraction[DivisorSigma[0, n] / DivisorSigma[-1, n]]; Table[row[k], {k, 1, 29}] // Flatten %Y A349473 Cf. A001599, A001600, A099377, A099378. %Y A349473 Cf. A349474 (row lengths). %K A349473 nonn,tabf %O A349473 1,3 %A A349473 _Amiram Eldar_, Nov 19 2021