cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349473 Irregular triangle read by rows: the n-th row contains the elements in the continued fraction of the harmonic mean of the divisors of n.

This page as a plain text file.
%I A349473 #5 Nov 19 2021 07:18:35
%S A349473 1,1,3,1,2,1,1,2,2,1,1,2,2,1,1,3,2,7,2,2,13,2,4,2,1,1,5,2,1,1,3,1,1,6,
%T A349473 2,3,2,2,2,1,1,2,1,1,2,1,1,8,2,1,3,3,1,1,9,2,1,6,2,1,1,1,2,2,2,4,1,1,
%U A349473 11,3,5,2,2,2,1,1,2,2,2,10,2,1,2,3,3,1,1,14
%N A349473 Irregular triangle read by rows: the n-th row contains the elements in the continued fraction of the harmonic mean of the divisors of n.
%C A349473 For an odd prime p > 3, the p-th row has a length 3 with a(p, 1) = a(p, 2) = 1 and a(p, 3) = (p-1)/2.
%C A349473 For a harmonic number m = A001599(k), the m-th row has a length 1 with a(k, 1) = A099377(m) = A001600(k).
%e A349473 The first ten rows of the triangle are:
%e A349473   1,
%e A349473   1, 3,
%e A349473   1, 2,
%e A349473   1, 1, 2, 2,
%e A349473   1, 1, 2,
%e A349473   2,
%e A349473   1, 1, 3,
%e A349473   2, 7, 2,
%e A349473   2, 13,
%e A349473   2, 4, 2
%e A349473   ...
%t A349473 row[n_] := ContinuedFraction[DivisorSigma[0, n] / DivisorSigma[-1, n]]; Table[row[k], {k, 1, 29}] // Flatten
%Y A349473 Cf. A001599, A001600, A099377, A099378.
%Y A349473 Cf. A349474 (row lengths).
%K A349473 nonn,tabf
%O A349473 1,3
%A A349473 _Amiram Eldar_, Nov 19 2021