This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349478 #11 Aug 28 2023 08:20:36 %S A349478 1,15,8,545,21,1131,16,98124,28676,1109305,28672,16837500,1231932, %T A349478 477021580,6129711,734420331,441972042,4343866215,42741916965, %U A349478 96692841558,2193739177 %N A349478 a(n) is the least number k such that the sequence of elements of the continued fraction of the harmonic mean of the divisors of k is palindromic with length n, or -1 if no such k exists. %C A349478 a(23) = 60755428490. %C A349478 No more terms below 10^11. %e A349478 The elements of the continued fractions of the harmonic mean of the divisors of the terms are: %e A349478 n a(n) elements %e A349478 -- ----------- ------------------------------------------- %e A349478 1 1 1 %e A349478 2 15 2,2 %e A349478 3 8 2,7,2 %e A349478 4 545 3,3,3,3 %e A349478 5 21 2,1,1,1,2 %e A349478 6 1131 5,2,1,1,2,5 %e A349478 7 16 2,1,1,2,1,1,2 %e A349478 8 98124 17,1,1,3,3,1,1,17 %e A349478 9 28676 6,1,2,3,1,3,2,1,6 %e A349478 10 1109305 6,1,1,1,1,1,1,1,1,6 %e A349478 11 28672 11,2,1,1,1,10,1,1,1,2,11 %e A349478 12 16837500 24,1,1,1,2,1,1,2,1,1,1,24 %e A349478 13 1231932 18,1,1,1,1,1,8,1,1,1,1,1,18 %e A349478 14 477021580 38,2,3,1,1,1,1,1,1,1,1,3,2,38 %e A349478 15 6129711 14,2,2,1,1,1,1,9,1,1,1,1,2,2,14 %e A349478 16 734420331 20,2,1,1,1,1,1,1,1,1,1,1,1,1,2,20 %e A349478 17 441972042 15,1,3,2,2,1,1,2,15,2,1,1,2,2,3,1,15 %e A349478 18 4343866215 18,1,1,7,1,8,2,1,1,1,1,2,8,1,7,1,1,18 %e A349478 19 42741916965 94,1,1,7,4,1,1,1,1,3,1,1,1,1,4,7,1,1,94 %e A349478 20 96692841558 28,2,4,1,1,4,1,1,1,6,6,1,1,1,4,1,1,4,2,28 %e A349478 21 2193739177 19,1,1,1,3,1,1,1,1,1,9,1,1,1,1,1,3,1,1,1,19 %t A349478 cfhm[n_] := ContinuedFraction[DivisorSigma[0, n]/DivisorSigma[-1, n]]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i, cf}, While[c < len && n < nmax, cf = cfhm[n]; If[PalindromeQ[cf] && (i = Length[cf]) <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; TakeWhile[s, # > 0 &]]; seq[11, 10^7] %Y A349478 Cf. A099377, A099378, A349473, A349477. %K A349478 nonn,more %O A349478 1,2 %A A349478 _Amiram Eldar_, Nov 19 2021