This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349483 #13 Nov 23 2021 11:27:11 %S A349483 1,2,2,2,4,2,5,2,2,7,2,1,2,5,6,1,2,2,2,3,2,2,2,1,1,2,4,1,2,1,2,3,1,2, %T A349483 1,1,2,2,1,3,2,4,2,1,3,2,2,4,3,6,1,1,2,2,3,3,1,2,2,4,2,2,1,3,3,3,2,1, %U A349483 1,2,2,1,2,2,1,1,1,3,2,8,1,2,2,3,3,2,1,3,2,3,1,1,1,2,3,1,2,4,1,2 %N A349483 Length of cycle reached when iterating the mapping x-> n*A035116(x) on 1. %C A349483 The terms 1-25 all appear below 10^8; the last of these are a(12545280) = 21, a(12684672) = 24, and a(96940800) = 25. - _Charles R Greathouse IV_, Nov 23 2021 %H A349483 Charles R Greathouse IV, <a href="/A349483/b349483.txt">Table of n, a(n) for n = 1..10000</a> %e A349483 For n = 2, 1 --> 2 --> 8 --> 32 --> 72 --> 288 --> 648 --> 800 --> 648. The cycle reached has just two terms: 648 and 800. Therefore, a(2) = 2. %t A349483 a[n_] := Module[{s = NestWhileList[n*DivisorSigma[0, #]^2 &, 1, UnsameQ, All]}, Differences[Position[s, s[[-1]]]][[1, 1]]]; Array[a, 100] (* _Amiram Eldar_, Nov 19 2021 *) %o A349483 (PARI) brent(f,x)=my(pow=1,lam=1,tortoise=x,hare=f(x)); while(tortoise!=hare, if(pow==lam, tortoise=hare; pow<<=1; lam=0); hare=f(hare); lam++); lam %o A349483 a(n)=brent(k->n*numdiv(k)^2,1) \\ _Charles R Greathouse IV_, Nov 19 2021 %Y A349483 Cf. A035116. %Y A349483 Similar sequences: A349410. %K A349483 nonn %O A349483 1,2 %A A349483 _Tejo Vrush_, Nov 19 2021