This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349485 #14 Sep 08 2022 08:46:26 %S A349485 18,27,153,803,1101,1503,1926,3070,3077,3546,4577,6246,6315,8717, %T A349485 10566,11646,14093,15310,15426,18456,24936,30617,33576,34326,43079, %U A349485 50418,59026,62004,69781,71009,71802,72587,74616,77593,80118,94056,110138,111546,112626,113166 %N A349485 Moran numbers whose arithmetic derivative is also a Moran number (A001101). %C A349485 Conjecture: The sequence is infinite. %e A349485 18 = A001101(1) and 18' = 21 = A001101(2), so 18 is a term. %e A349485 153 = A001101(13) and 153' = 111 = A001101(8), so 153 is a term. %t A349485 moranQ[n_] := PrimeQ[n / Plus @@ IntegerDigits[n]]; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[120000], And @@ moranQ /@ {#, d[#]} &] (* _Amiram Eldar_, Nov 20 2021 *) %o A349485 (Magma) f:=func<n |n le 1 select 0 else n*(&+[Factorisation(n)[i][2] / Factorisation(n)[i][1]: i in [1..#Factorisation(n)]]) >; moran:=func<n|n mod &+Intseq(n) eq 0 and IsPrime(n div &+Intseq(n))>; [n:n in [2..114000]| moran(n) and moran(Floor(f(n)))]; %Y A349485 Cf. A001101 (Moran number), A003415 (arithmetic derivative). %K A349485 nonn,base %O A349485 1,1 %A A349485 _Marius A. Burtea_, Nov 20 2021