cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349493 a(1)=1, a(2)=2; for n > 2, a(n) is the smallest unused positive number such that gcd(a(n-2)+a(n-1), a(n)) > 1 while gcd(a(n-2), a(n)) = 1 and gcd(a(n-1), a(n)) = 1.

Original entry on oeis.org

1, 2, 3, 5, 4, 9, 13, 8, 7, 15, 11, 14, 25, 27, 16, 43, 59, 6, 35, 41, 12, 53, 55, 18, 73, 49, 10, 177, 17, 20, 37, 19, 21, 22, 215, 39, 28, 67, 45, 26, 71, 97, 24, 77, 101, 30, 131, 23, 32, 33, 65, 34, 57, 91, 40, 393, 433, 38, 51, 89, 44, 63, 107, 46, 75, 121, 52, 173, 69, 50, 119, 117, 58, 85
Offset: 1

Views

Author

Scott R. Shannon, Nov 20 2021

Keywords

Comments

In the first 100000 terms the smallest unseen number is 14657, although it is likely all numbers eventually appear. In the same range the fixed points are 3, 8, 11, 69, 207, 543, 555, 663, 687, 981. The majority of terms more than n = 100000 appear to move away from the line y = n, see the linked image, so it is unclear if more exist. The largest value in the first 100000 terms is a(87952) = 4758245.

Examples

			a(3) = 3 as a(1)+a(2) = 3, gcd(1,3) = 1, gcd(2,3) = 1, gcd(3,3) > 1 and 3 is unused.
a(4) = 5 as a(2)+a(3) = 5, gcd(2,5) = 1, gcd(3,5) = 1, gcd(5,5) > 1 and 5 is unused.
a(8) = 8 as a(6)+a(7) = 22, gcd(9,8) = 1, gcd(13,8) = 1, gcd(22,8) > 1 and 8 is unused.
		

Crossrefs

Programs

  • Mathematica
    a[1]=1; a[2]=2; a[n_]:=a[n]=(k=2;While[MemberQ[Array[a,n-1],k]||GCD[a[n-2]+a[n-1],k]<=1||GCD[a[n-2],k]!=1||GCD[a[n-1],k]!=1,k++];k); Array[a,74] (* Giorgos Kalogeropoulos, Nov 20 2021 *)
  • Python
    from math import gcd
    terms, appears = [1, 2], {2:True}
    for n in range(3, 100):
        t = 3
        while not(appears.get(t) is None and gcd(terms[-2]+terms[-1], t)>1 and gcd(terms[-2], t)==1 and gcd(terms[-1], t)==1):
            t += 1
        appears[t] = True; terms.append(t);
    print(terms) #Gleb Ivanov, Nov 20 2021