A349494 a(n) is the maximum of A000120(k)*A000120(n/k) for divisors k of n.
1, 1, 2, 1, 2, 2, 3, 1, 4, 2, 3, 2, 3, 3, 4, 1, 2, 4, 3, 2, 6, 3, 4, 2, 4, 3, 4, 3, 4, 4, 5, 1, 6, 2, 6, 4, 3, 3, 6, 2, 3, 6, 4, 3, 8, 4, 5, 2, 9, 4, 4, 3, 4, 4, 6, 3, 6, 4, 5, 4, 5, 5, 6, 1, 6, 6, 3, 2, 8, 6, 4, 4, 3, 3, 8, 3, 9, 6, 5, 2, 8, 3, 4, 6, 4, 4, 8, 3, 4, 8, 9, 4, 10, 5, 6, 2, 3, 9, 6
Offset: 1
Examples
a(45) = 8 because 45 = 3 * 15 with A072084(3) * A072084(15) = 2 * 4 = 8, and the other factorizations 1 * 45 and 5 * 9 have A072084(k) * A072084(45/k) = 4.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
g:= proc(n) convert(convert(n,base,2),`+`) end proc: f:= proc(n) local t,r; max(seq(g(t)*g(n/t), t = numtheory:-divisors(n))) end proc: map(f, [$1..100]);
-
Mathematica
a[n_] := Max[(d = DigitCount[Divisors[n], 2, 1]) * Reverse[d]]; Array[a, 100] (* Amiram Eldar, Sep 03 2023 *)
Formula
a(n) = a(2*n).
Comments