cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349497 a(n) is the smallest element in the continued fraction of the harmonic mean of the divisors of n.

This page as a plain text file.
%I A349497 #9 Nov 21 2021 05:08:59
%S A349497 1,1,1,1,1,2,1,2,2,2,1,1,1,2,2,1,1,1,1,1,1,2,1,3,1,2,1,3,1,3,1,3,1,1,
%T A349497 1,1,1,1,1,1,1,2,1,3,2,1,1,1,1,2,1,2,1,1,3,1,1,1,1,2,1,1,1,1,2,1,1,3,
%U A349497 1,1,1,2,1,1,1,1,1,1,1,3,1,1,1,2,1,1,1
%N A349497 a(n) is the smallest element in the continued fraction of the harmonic mean of the divisors of n.
%H A349497 Amiram Eldar, <a href="/A349497/b349497.txt">Table of n, a(n) for n = 1..10000</a>
%F A349497 a(p) = 1 for a prime p.
%F A349497 a(p^2) = 1 for a prime p != 3.
%F A349497 a(A129521(n)) = 1 for n > 3.
%F A349497 For a harmonic number m = A001599(k), a(m) = A099377(m) = A001600(k).
%e A349497 a(2) = 1 since the continued fraction of the harmonic mean of the divisors of 2, 4/3 = 1 + 1/3, has 2 elements, {1, 3}, and the smallest of them is 1.
%t A349497 a[n_] := Min[ContinuedFraction[DivisorSigma[0, n] / DivisorSigma[-1, n]]]; Array[a, 100]
%Y A349497 Cf. A001248, A001599, A001600, A099377, A099378, A129521, A349473.
%K A349497 nonn
%O A349497 1,6
%A A349497 _Amiram Eldar_, Nov 20 2021