This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349503 #8 Nov 20 2021 20:49:57 %S A349503 1,2,20,52,156,768,8244,25808,406764,3610688,41395016,453695175, %T A349503 3325792768 %N A349503 a(n) is the least number k such that the continued fraction of the harmonic mean of the divisors of k contains n elements that are all distinct. %e A349503 The elements of the continued fractions of the harmonic mean of the divisors of the first 13 terms: %e A349503 n a(n) elements %e A349503 -- ---------- ----------------------------- %e A349503 1 1 1 %e A349503 2 2 1,3 %e A349503 3 20 2,1,6 %e A349503 4 52 3,5,2,4 %e A349503 5 156 4,1,3,2,5 %e A349503 6 768 6,1,3,4,2,13 %e A349503 7 8244 7,11,8,3,1,13,2 %e A349503 8 25808 5,6,3,13,1,2,4,7 %e A349503 9 406764 7,8,3,6,9,2,1,4,12 %e A349503 10 3610688 7,18,5,2,3,6,1,4,13,11 %e A349503 11 41395016 7,1,12,8,4,2,3,5,19,6,10 %e A349503 12 453695175 16,5,8,1,10,48,7,13,2,3,6,4 %e A349503 13 3325792768 19,1,21,7,6,3,12,13,5,9,2,8,4 %t A349503 cflen[n_] := Module[{cf = ContinuedFraction[DivisorSigma[0, n]/DivisorSigma[-1, n]], len}, If[(len = Length[cf]) == Length[DeleteDuplicates[cf]], len, 0]]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = cflen[n]; If[i > 0 && i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; TakeWhile[s, # > 0 &]]; seq[10, 10^7] %Y A349503 Cf. A349473, A349502. %K A349503 nonn,more %O A349503 1,2 %A A349503 _Amiram Eldar_, Nov 20 2021