This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349536 #52 Feb 16 2025 08:34:02 %S A349536 1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,20,21,22,23,24,25,26,27, %T A349536 31,32,33,34,35,37,38,39,40,44,45,46,47,48,49,50,52,53,54,55,56,57,58, %U A349536 59,60,61,62,63,64,65,66,67,68,71,75,76,77,78,79,80,84,85,86,87,89 %N A349536 Consider a circle on the Z X Z lattice with radius equal to the Pythagorean hypotenuse h(n) (A009003); a(n) = number of Pythagorean triples inside a Pi/4 sector of the circle. %C A349536 Number of Pythagorean triples with hypotenuse less than or equal to the next one. %D A349536 W. Sierpinski, Pythagorean Triangles, Dover Publications, 2003. %H A349536 Alexander Kritov, <a href="/A349536/b349536.txt">Table of n, a(n) for n = 1..1050</a> %H A349536 Manuel Benito and Juan L. Varona, <a href="https://doi.org/10.1016/S0377-0427(01)00496-4">Pythagorean triangles with legs less than n</a>, Journal of Computational and Applied Mathematics 143, (2002), pp. 117-126. %H A349536 E. Eckert, <a href="http://www.jstor.org/stable/2690291">The group of primitive Pythagorean triangles</a>, Mathematics Magazine 57 (1984) 22-27. %H A349536 Alexander Kritov, <a href="/A349536/a349536.c.txt">C code that generates b-file</a> %H A349536 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PythagoreanTriple.html">Pythagorean Triple</a> %F A349536 Conjecture: the increment is a(n+1) - a(n) = 2^(m-1), where m is the sum of all powers of the Pythagorean primes (A002144) in the factorization of hypotenuse h(n+1) (see Eckert for PPT). However, starting from 58 the increment is 3. %e A349536 The count of non-primitive Pythagorean triples as they appear in order of increasing hypotenuse: %e A349536 . %e A349536 Hypotenuse %e A349536 n (A009003(n)) Sides a(n) %e A349536 -- ------------ --------------- ---- %e A349536 1 5 (3,4) 1 %e A349536 2 10 (6,8) 2 %e A349536 3 13 (5,12) 3 %e A349536 4 15 (9,12) 4 %e A349536 5 17 (8,15) 5 %e A349536 6 20 (12,16) 6 %e A349536 7 25 (7,24), (15,20) 8 %e A349536 8 26 (10,24) 9 %e A349536 9 29 (20,21) 10 %o A349536 (C) %o A349536 // see enclosed main.c %o A349536 for (long j=1;j< 101;++j) %o A349536 { %o A349536 for (long k=1;k< 101;++k) %o A349536 { %o A349536 if (k<=j) // to avoid pairs (as we need 1/8 or quarter plane) %o A349536 { %o A349536 double hyp=sqrt(j*j+k*k); %o A349536 double c= (double) floor (hyp ); %o A349536 if (fabs(hyp - c) < DBL_EPSILON) arr[r++]= (long) c; %o A349536 }}} %o A349536 bubbleSort(arr, r);//sort by hypotenuse increase %o A349536 for (long j=0;j< r;++j) %o A349536 { %o A349536 if ( arr[j] != arr[j+1] ) %o A349536 { %o A349536 // write to file: j is the sequence value a[n]*2 %o A349536 // arr[j] is the hypotenuse value %o A349536 } %o A349536 } %Y A349536 Cf. A008846, A009003. %Y A349536 Cf. A020882, A081804, A008846, A020883, A046086. %Y A349536 Cf. A349538 (extension to the full circle of Z^2 lattice). %K A349536 nonn %O A349536 1,2 %A A349536 _Alexander Kritov_, Nov 21 2021