cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349537 Least positive integer m such that the n numbers 33*k^2*(k^3+1) (k = 1..n) are pairwise distinct modulo m.

Original entry on oeis.org

1, 4, 7, 7, 13, 13, 13, 13, 13, 31, 41, 41, 61, 61, 61, 61, 61, 61, 61, 73, 101, 137, 137, 137, 137, 137, 137, 137, 137, 233, 233, 233, 233, 233, 233, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 547, 547, 547, 547, 547, 547, 547, 547, 547, 547, 859, 859, 859, 859, 859, 859
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 21 2021

Keywords

Comments

Conjecture: a(n) is prime for each n > 2.
We have verified this for n up to 10^4.

Examples

			a(2) = 4 since 33*1^2*(1^3+1) = 66 and 33*2^2*(2^3+1) = 1188 are incongruent modulo 4, but they are congruent modulo each of 1, 2 and 3.
		

Crossrefs

Programs

  • Mathematica
    f[k_]:=f[k]=33*k^2*(k^3+1);
    U[m_,n_]:=U[m,n]=Length[Union[Table[Mod[f[k],m],{k,1,n}]]]
    tab={};s=1;Do[m=s;Label[bb];If[U[m,n]==n,s=m;tab=Append[tab,s];Goto[aa]];m=m+1;Goto[bb];Label[aa],{n,1,70}];Print[tab]