A349546 Composite numbers k such that k+1 is divisible by (k+1 mod A001414(k)) and k-1 is divisible by (k-1 mod A001414(k)).
4, 8, 20, 32, 50, 55, 64, 77, 80, 98, 110, 115, 125, 128, 152, 170, 216, 242, 243, 256, 275, 290, 329, 338, 341, 343, 364, 371, 416, 506, 511, 512, 544, 551, 578, 583, 611, 638, 663, 722, 729, 731, 741, 851, 870, 920, 987, 1024, 1025, 1054, 1058, 1079, 1144, 1219, 1243, 1298, 1325, 1331, 1421
Offset: 1
Keywords
Examples
a(3) = 20 is a term because A001414(20) = 2+2+5 = 9, 20+1 = 21 is divisible by 21 mod 9 = 3, and 20-1 = 19 is divisible by 19 mod 9 = 1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local s, t,r,q; if isprime(n) then return false fi; s:= add(t[1]*t[2],t = ifactors(n)[2]); r:= (n+1) mod s; q:= (n-1) mod s; r<> 0 and q <> 0 and (n+1) mod r = 0 and (n-1) mod q = 0 end proc: select(filter, [$4..2000]);
-
Mathematica
filter[n_] := Module[{s, t, r, q}, If[ PrimeQ[n], Return[False]]; s = Sum[t[[1]]*t[[2]], {t, FactorInteger[n]}]; r = Mod[n+1, s]; q = Mod[n-1, s]; r != 0 && q != 0 && Mod[n+1, r] == 0 && Mod[n-1, q ] == 0]; Select[Range[4, 2000], filter] (* Jean-François Alcover, Sep 29 2024, after Maple program *)