This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349562 #40 Feb 16 2025 08:34:02 %S A349562 1,2,8,56,576,7872,134656,2771456,66744320,1842237440,57354338304, %T A349562 1988721131520,76015173369856,3175757373243392,143980934947930112, %U A349562 7040807787705663488,369414622819764928512,20700889684976244621312,1233951687316746828513280,77963762014950356953333760 %N A349562 Number of labeled rooted forests with 2-colored leaves. %C A349562 a(n) is the number of labeled trees on vertices 0,1,...,n rooted at 0, where all leaves have 2 colors (except the singleton tree 0 has only 1 color). %H A349562 Seiichi Manyama, <a href="/A349562/b349562.txt">Table of n, a(n) for n = 0..372</a> %H A349562 Alexander Burstein and Louis W. Shapiro, <a href="https://arxiv.org/abs/2112.11595">Pseudo-involutions in the Riordan group</a>, arXiv:2112.11595 [math.CO], 2021. %H A349562 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A349562 a(n) = Sum_{k=0..n} binomial(n,k)*(k+1)^(n-1). %F A349562 a(n) = A216857(n+1)/(n+1). %F A349562 a(n) = A038049(n+1)/(n+1) for n>=1, and a(0) = A038049(1)/2. %F A349562 a(n) = 2*A201595(n) - A000007(n). %F A349562 E.g.f. satisfies: A(x) = e^(x*(1 + A(x))). %F A349562 E.g.f. satisfies: A(-x*A(x)) = 1/A(x). %F A349562 From _Vaclav Kotesovec_, Nov 25 2021: (Start) %F A349562 E.g.f.: -LambertW(-x*exp(x))/x. %F A349562 a(n) ~ sqrt(1 + LambertW(exp(-1))) * n^(n-1) / (exp(n) * LambertW(exp(-1))^(n+1)). %F A349562 (End) %F A349562 From _Seiichi Manyama_, Nov 26 2021: (Start) %F A349562 G.f.: Sum_{k>=0} (k+1)^(k-1) * x^k/(1 - (k+1)*x)^(k+1). %F A349562 a(n) = 2^n * A007889(n). (End) %e A349562 a(2)=8 counts trees 0-1-2B, 0-1-2R, 0-2-1B, 0-2-1R, 1B-0-2B, 1B-0-2R, 1R-0-2B, 1R-0-2R (where B and R stand for colors Blue and Red). %t A349562 CoefficientList[u/.AsymptoticSolve[u-E^(x(1+u))==0,u->1,{x,0,24}][[1]],x]Factorial/@Range[0,24] %t A349562 nmax = 20; CoefficientList[Series[-LambertW[-x*Exp[x]]/x, {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, Nov 25 2021 *) %o A349562 (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k+1)^(k-1)*x^k/(1-(k+1)*x)^(k+1))) \\ _Seiichi Manyama_, Nov 26 2021 %Y A349562 Cf. A000007, A007889, A216857, A038049, A201595, %K A349562 nonn %O A349562 0,2 %A A349562 _Alexander Burstein_, Nov 22 2021