cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349571 Dirichlet convolution of A048673 with A055615 (Dirichlet inverse of n).

This page as a plain text file.
%I A349571 #14 Nov 26 2021 16:18:08
%S A349571 1,0,0,1,-1,2,-1,4,4,3,-4,4,-4,5,6,13,-7,6,-7,5,10,6,-8,10,5,8,24,9,
%T A349571 -13,-2,-12,40,12,9,16,16,-16,11,16,11,-19,-2,-19,8,14,14,-20,28,19,9,
%U A349571 18,12,-23,26,22,21,22,15,-28,2,-27,18,26,121,28,-8,-31,11,28,-8,-34,46,-33,20,18,15,34,-8,-37,29,124
%N A349571 Dirichlet convolution of A048673 with A055615 (Dirichlet inverse of n).
%C A349571 Also Dirichlet convolution of A349385 with A349387.
%H A349571 Antti Karttunen, <a href="/A349571/b349571.txt">Table of n, a(n) for n = 1..20000</a>
%H A349571 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A349571 a(n) = Sum_{d|n} A048673(n/d) * A055615(d).
%F A349571 a(n) = Sum_{d|n} A349385(n/d) * A349387(d).
%t A349571 f[p_, e_] := NextPrime[p]^e; s[1] = 1; s[n_] := (1 + Times @@ f @@@ FactorInteger[n])/2; a[n_] := DivisorSum[n, # * MoebiusMu[#] * s[n/#] &]; Array[a, 100] (* _Amiram Eldar_, Nov 23 2021 *)
%o A349571 (PARI)
%o A349571 A048673(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1/2)*(1+factorback(f)); };
%o A349571 A055615(n) = (n*moebius(n));
%o A349571 A349571(n) = sumdiv(n,d,A048673(n/d)*A055615(d));
%Y A349571 Cf. A048673, A055615, A349385, A349387, A349572 (Dirichlet inverse).
%Y A349571 Cf. also A349398, A349573.
%K A349571 sign
%O A349571 1,6
%A A349571 _Antti Karttunen_, Nov 23 2021