cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349572 Dirichlet convolution of A000027 (identity function) with the Dirichlet inverse of A048673.

This page as a plain text file.
%I A349572 #15 Nov 26 2021 10:34:49
%S A349572 1,0,0,-1,1,-2,1,-4,-4,-3,4,-4,4,-5,-6,-12,7,-6,7,-7,-10,-6,8,-6,-4,
%T A349572 -8,-24,-11,13,-2,12,-32,-12,-9,-14,-4,16,-11,-16,-13,19,-2,19,-16,
%U A349572 -22,-14,20,-4,-18,-15,-18,-20,23,-10,-14,-19,-22,-15,28,14,27,-18,-34,-80,-20,-8,31,-25,-28,-8,34,14,33,-20
%N A349572 Dirichlet convolution of A000027 (identity function) with the Dirichlet inverse of A048673.
%C A349572 Also Dirichlet convolution of A349384 with A349388.
%H A349572 Antti Karttunen, <a href="/A349572/b349572.txt">Table of n, a(n) for n = 1..20000</a>
%H A349572 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A349572 a(n) = Sum_{d|n} d * A323893(n/d).
%F A349572 a(n) = Sum_{d|n} A349384(d) * A349388(n/d).
%t A349572 f[p_, e_] := NextPrime[p]^e; s[1] = 1; s[n_] := (1 + Times @@ f @@@ FactorInteger[n])/2; sinv[1] = 1; sinv[n_] := sinv[n] = -DivisorSum[n, sinv[#] * s[n/#] &, # < n &]; a[n_] := DivisorSum[n, # * sinv[n/#] &]; Array[a, 100] (* _Amiram Eldar_, Nov 23 2021 *)
%o A349572 (PARI)
%o A349572 A048673(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); (1/2)*(1+factorback(f)); };
%o A349572 memoA323893 = Map();
%o A349572 A323893(n) = if(1==n,1,my(v); if(mapisdefined(memoA323893,n,&v), v, v = -sumdiv(n,d,if(d<n,A048673(n/d)*A323893(d),0)); mapput(memoA323893,n,v); (v)));
%o A349572 A349572(n) = sumdiv(n,d,d*A323893(n/d));
%Y A349572 Cf. A000027, A048673, A323893, A349384, A349388, A349571 (Dirichlet inverse).
%Y A349572 Cf. also A349397.
%K A349572 sign
%O A349572 1,6
%A A349572 _Antti Karttunen_, Nov 23 2021