A349576 Recurrence a(1) = 1, a(2) = 5; a(n) = (a(n-1) + a(n-2))/GCD(a(n-1),a(n-2)) + 1.
1, 5, 7, 13, 21, 35, 9, 45, 7, 53, 61, 115, 177, 293, 471, 765, 413, 1179, 1593, 309, 635, 945, 317, 1263, 1581, 949, 2531, 3481, 6013, 9495, 15509, 25005, 40515, 4369, 44885, 49255, 18829, 68085, 86915, 31001, 117917, 148919, 266837, 415757, 682595, 1098353
Offset: 1
Keywords
Links
- Mathematics Stack Exchange user Augusto Santi, Investigating the recurrence relation.
Programs
-
Python
from itertools import islice from math import gcd def A349576_gen(): # generator of terms blist = [1, 5] yield from blist while True: blist = [blist[1],sum(blist)//gcd(*blist) + 1] yield blist[-1] A349576_list = list(islice(A349576_gen(),30)) # Chai Wah Wu, Jan 10 2022
Comments