This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349588 #17 Nov 25 2021 08:52:17 %S A349588 1,1,2,8,47,367,3592,42317,583522,9223872,164482761,3267077365, %T A349588 71540314562,1712334954865,44479256704898,1246241906483516, %U A349588 37465750470667023,1202986323660907447,41089436549405467096,1487622596267089224901,56907111260864275384346 %N A349588 E.g.f. satisfies: A(x) * log(A(x)) = exp(x*A(x)) - 1. %H A349588 Seiichi Manyama, <a href="/A349588/b349588.txt">Table of n, a(n) for n = 0..403</a> %F A349588 a(n) = Sum_{k=0..n} (n-k+1)^(k-1) * Stirling2(n,k). %F A349588 a(n) ~ s * n^(n-1) / (sqrt(r*s - 1/(1 + log(s))) * exp(n) * r^n), where r = 0.4858893246242883887847088396703818017675758048583... and s = 3.016426175038226058288579473351450432292607021364... are roots of the system of equations exp(r*s) = 1 + s*log(s), exp(r*s)*r = 1 + log(s). - _Vaclav Kotesovec_, Nov 25 2021 %t A349588 a[n_] := Sum[(n - k + 1)^(k - 1)*StirlingS2[n, k], {k, 0, n}]; Array[a, 21, 0] (* _Amiram Eldar_, Nov 23 2021 *) %o A349588 (PARI) a(n) = sum(k=0, n, (n-k+1)^(k-1)*stirling(n, k, 2)); %Y A349588 Cf. A141209, A349587, A349589. %Y A349588 Cf. A349557. %K A349588 nonn %O A349588 0,3 %A A349588 _Seiichi Manyama_, Nov 22 2021