A349593 Square array read by downward diagonals: for n >= 0, k >= 1, T(n,k) is the period of {binomial(N,n) mod k: N in Z}.
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 3, 4, 1, 1, 5, 8, 9, 8, 1, 1, 6, 5, 8, 9, 8, 1, 1, 7, 12, 5, 16, 9, 8, 1, 1, 8, 7, 36, 5, 16, 9, 8, 1, 1, 9, 16, 7, 72, 25, 16, 9, 16, 1, 1, 10, 9, 16, 7, 72, 25, 16, 9, 16, 1, 1, 11, 20, 27, 32, 7, 72, 25, 32, 27, 16, 1
Offset: 0
Examples
Rows 0..10: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... 1, 4, 3, 8, 5, 12, 7, 16, 9, 20, ... 1, 4, 9, 8, 5, 36, 7, 16, 27, 20, ... 1, 8, 9, 16, 5, 72, 7, 32, 27, 40, ... 1, 8, 9, 16, 25, 72, 7, 32, 27, 200, ... 1, 8, 9, 16, 25, 72, 7, 32, 27, 200, ... 1, 8, 9, 16, 25, 72, 49, 32, 27, 200, ... 1, 16, 9, 32, 25, 144, 49, 64, 27, 400, ... 1, 16, 27, 32, 25, 432, 49, 64, 81, 400, ... 1, 16, 27, 32, 25, 432, 49, 64, 81, 400, ... Example showing that T(4,4) = 16: for N == 0, 1, ..., 15 (mod 16), binomial(N,4) == {0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1} (mod 4). Example showing that T(3,10) = 20: for N == 0, 1, ..., 19 (mod 20), binomial(N,3) == {0, 0, 0, 1, 4, 0, 0, 5, 6, 4, 0, 5, 0, 6, 4, 5, 0, 0, 6, 9} (mod 10).
Links
- Jianing Song, Table of n, a(n) for antidiagonals 1..100 (T(n,k) occurs at the ((n+k)*(n+k-1)/2+n)-th place)
- Andrew Granville, Arithmetic Properties of Binomial Coefficients I: Binomial Coefficients modulo prime powers
- Jianing Song, Proof for my formula for A349593
- Jianing Song, A more simple proof of the formula for A349593
- Wikipedia, Kummer's_theorem
Crossrefs
Cf. A022998 (row n = 2), A385555 (row n = 3), A385556 (row n = 4), A385557 (rows n = 5 and 6), A385558 (row n = 7), A385559 (row n = 8), A385560 (rows n = 9 and 10).
Cf. A062383 (2nd column), A064235 (3rd column if offset 0), A385552 (5th column), A385553 (6th column), A385554 (10th column).
Cf. A349221.
Programs
-
Mathematica
A349593[n_, k_] := If[n == 0 || k == 1, 1, k*Product[p^Floor[Log[p, n]], {p, FactorInteger[k][[All, 1]]}]]; Table[A349593[k - 1, n - k + 2], {n, 0, 15}, {k, n + 1}] (* Paolo Xausa, Jul 07 2025 *)
-
PARI
T(n,k) = if(n==0, 1, my(r=1, f=factor(k)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); r *= p^(logint(n,p)+e)); return(r))
Formula
The n-th row is multiplicative with T(n,p^e) = 1 if n = 0, p^(e+floor(log(n)/log(p))) otherwise. In other words, for n > 0, T(n,k) = k * Product_{prime p|k} p^(floor(log(n)/log(p))). See my pdf file for a proof.
Comments