cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349599 E.g.f. satisfies: log(A(x)) = 1 - exp(-x*A(x)^2).

This page as a plain text file.
%I A349599 #18 Nov 24 2021 01:24:32
%S A349599 1,1,4,29,305,4192,70875,1416781,32551650,841273527,24032201213,
%T A349599 747395938962,24946766300549,880465276003861,32274320771151308,
%U A349599 1197240324544640433,42849289206116498093,1304855947753532683776,14954863230501575196551,-2798084168801754024136463
%N A349599 E.g.f. satisfies: log(A(x)) = 1 - exp(-x*A(x)^2).
%C A349599 a(19) < 0.
%H A349599 Seiichi Manyama, <a href="/A349599/b349599.txt">Table of n, a(n) for n = 0..374</a>
%F A349599 a(n) = Sum_{k=0..n} (-1)^(n-k) * (2*n+1)^(k-1) * Stirling2(n,k).
%o A349599 (PARI) a(n) = sum(k=0, n, (-1)^(n-k)*(2*n+1)^(k-1)*stirling(n, k, 2));
%Y A349599 Cf. A001761, A001763, A349598.
%Y A349599 Cf. A349527, A349602.
%K A349599 sign
%O A349599 0,3
%A A349599 _Seiichi Manyama_, Nov 22 2021