cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349602 E.g.f. satisfies: A(x) * log(A(x)) = 1 - exp(-x*A(x)^2).

This page as a plain text file.
%I A349602 #18 Nov 25 2021 08:52:05
%S A349602 1,1,2,2,-43,-668,-5908,-1209,1399400,37121106,508366819,-3012861630,
%T A349602 -444910083132,-15407930598279,-249403814792546,5359691081465462,
%U A349602 589889204153846141,23861630070579997032,379819221897309026072,-21971010821241361939769
%N A349602 E.g.f. satisfies: A(x) * log(A(x)) = 1 - exp(-x*A(x)^2).
%H A349602 Seiichi Manyama, <a href="/A349602/b349602.txt">Table of n, a(n) for n = 0..390</a>
%F A349602 a(n) = Sum_{k=0..n} (-1)^(n-k) * (2*n-k+1)^(k-1) * Stirling2(n,k).
%t A349602 a[n_] := Sum[(-1)^(n - k)*(2*n - k + 1)^(k - 1)*StirlingS2[n, k], {k, 0, n}]; Array[a, 20, 0] (* _Amiram Eldar_, Nov 23 2021 *)
%o A349602 (PARI) a(n) = sum(k=0, n, (-1)^(n-k)*(2*n-k+1)^(k-1)*stirling(n, k, 2));
%Y A349602 Cf. A216135, A349600, A349601.
%Y A349602 Cf. A349585, A349589.
%K A349602 sign
%O A349602 0,3
%A A349602 _Seiichi Manyama_, Nov 22 2021