This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349604 #8 Nov 23 2021 09:02:48 %S A349604 1,3,7,7,7,8,5,1,6,9,8,3,7,5,4,1,1,8,3,8,4,0,8,9,4,9,0,3,7,0,8,6,9,1, %T A349604 3,7,9,1,6,4,6,4,0,1,6,6,3,8,6,8,3,5,9,6,1,4,8,7,5,6,6,1,5,9,2,1,6,4, %U A349604 6,8,4,7,8,4,8,1,2,6,2,2,9,6,5,2,4,4,1,1,8,7,8,8,0,7,7,3,4,8,3,0,1,0,8,5,3 %N A349604 Decimal expansion of the positive real solution to (1 - 1/2^x) * zeta(x) = 2. %C A349604 This constant, c, appears in the inequality A074206(n) <= n^c for odd n (Baustian and Bobkov, 2020). %H A349604 Falko Baustian and Vladimir Bobkov, <a href="https://doi.org/10.1142/S1793042120500700">On asymptotic behavior of Dirichlet inverse</a>, International Journal of Number Theory, Vol. 16, No. 6 (2020), pp. 1337-1354; <a href="https://arxiv.org/abs/1903.12445">arXiv preprint</a>, arXiv:1903.12445 [math.NT], 2019-2020. %e A349604 1.37778516983754118384089490370869137916464016638683... %t A349604 RealDigits[s /. FindRoot[(1 - 1/2^s)*Zeta[s] == 2, {s, 2}, WorkingPrecision -> 110], 10, 100][[1]] %o A349604 (PARI) solve(x=1.1, 2, (1-1/2^x)*zeta(x) - 2) \\ _Michel Marcus_, Nov 23 2021 %Y A349604 Cf. A074206, A107311. %K A349604 nonn,cons %O A349604 1,2 %A A349604 _Amiram Eldar_, Nov 23 2021